Search results for: Chapman Kolmogorov forward differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4208

Search results for: Chapman Kolmogorov forward differential equations

4148 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 213
4147 Solving SPDEs by Least Squares Method

Authors: Hassan Manouzi

Abstract:

We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: least squares, wick product, SPDEs, finite element, wiener chaos expansion, gradient method

Procedia PDF Downloads 419
4146 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations

Authors: J. P. Chollom, G. M. Kumleng, S. Longwap

Abstract:

The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.

Keywords: block linear multistep methods, high order, implicit, stiff differential equations

Procedia PDF Downloads 358
4145 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 175
4144 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
4143 Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative

Authors: Ramzi B. Albadarneh

Abstract:

In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given.

Keywords: conformable fractional derivative, finite difference formula, fractional derivative, finite difference formula

Procedia PDF Downloads 439
4142 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 463
4141 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.

Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 336
4140 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models

Procedia PDF Downloads 377
4139 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation

Procedia PDF Downloads 416
4138 Existence Theory for First Order Functional Random Differential Equations

Authors: Rajkumar N. Ingle

Abstract:

In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.

Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon

Procedia PDF Downloads 501
4137 Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations

Authors: Helmi Temimi

Abstract:

In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints.

Keywords: discontinuous, galerkin, superconvergence, higherorder, error, estimates

Procedia PDF Downloads 478
4136 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 152
4135 Symbolic Partial Differential Equations Analysis Using Mathematica

Authors: Davit Shahnazaryan, Diogo Gomes, Mher Safaryan

Abstract:

Many symbolic computations and manipulations required in the analysis of partial differential equations (PDE) or systems of PDEs are tedious and error-prone. These computations arise when determining conservation laws, entropies or integral identities, which are essential tools for the study of PDEs. Here, we discuss a new Mathematica package for the symbolic analysis of PDEs that automate multiple tasks, saving time and effort. Methodologies: During the research, we have used concepts of linear algebra and partial differential equations. We have been working on creating algorithms based on theoretical mathematics to find results mentioned below. Major Findings: Our package provides the following functionalities; finding symmetry group of different PDE systems, generation of polynomials invariant with respect to different symmetry groups; simplification of integral quantities by integration by parts and null Lagrangian cleaning, computing general forms of expressions by integration by parts; finding equivalent forms of an integral expression that are simpler or more symmetric form; determining necessary and sufficient conditions on the coefficients for the positivity of a given symbolic expression. Conclusion: Using this package, we can simplify integral identities, find conserved and dissipated quantities of time-dependent PDE or system of PDEs. Some examples in the theory of mean-field games and semiconductor equations are discussed.

Keywords: partial differential equations, symbolic computation, conserved and dissipated quantities, mathematica

Procedia PDF Downloads 163
4134 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate

Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo

Abstract:

A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.

Keywords: chemical reaction, MHD, double-diffusive, stretching plate

Procedia PDF Downloads 409
4133 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations

Authors: Gilbert Makanda

Abstract:

The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.

Keywords: differential equations, knowledge acquisition, least squares, dynamical systems

Procedia PDF Downloads 423
4132 Bernstein Type Polynomials for Solving Differential Equations and Their Applications

Authors: Yilmaz Simsek

Abstract:

In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values.

Keywords: generating functions, Bernstein basis functions, Bernstein polynomials, Bezier curves, differential equations

Procedia PDF Downloads 274
4131 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury

Procedia PDF Downloads 269
4130 Solving Ill-Posed Initial Value Problems for Switched Differential Equations

Authors: Eugene Stepanov, Arcady Ponosov

Abstract:

To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.

Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities

Procedia PDF Downloads 184
4129 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations

Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran

Abstract:

In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.

Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions

Procedia PDF Downloads 431
4128 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems

Procedia PDF Downloads 376
4127 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils

Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh

Abstract:

This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.

Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional

Procedia PDF Downloads 216
4126 Development of Variable Order Block Multistep Method for Solving Ordinary Differential Equations

Authors: Mohamed Suleiman, Zarina Bibi Ibrahim, Nor Ain Azeany, Khairil Iskandar Othman

Abstract:

In this paper, a class of variable order fully implicit multistep Block Backward Differentiation Formulas (VOBBDF) using uniform step size for the numerical solution of stiff ordinary differential equations (ODEs) is developed. The code will combine three multistep block methods of order four, five and six. The order selection is based on approximation of the local errors with specific tolerance. These methods are constructed to produce two approximate solutions simultaneously at each iteration in order to further increase the efficiency. The proposed VOBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with single order Block Backward Differentiation Formula (BBDF). Numerical results shows the advantage of using VOBBDF for solving ODEs.

Keywords: block backward differentiation formulas, uniform step size, ordinary differential equations

Procedia PDF Downloads 447
4125 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 319
4124 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy

Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu

Abstract:

The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.

Keywords: complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment

Procedia PDF Downloads 259
4123 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 84
4122 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis

Procedia PDF Downloads 421
4121 Differential Transform Method: Some Important Examples

Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen

Abstract:

In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.

Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions

Procedia PDF Downloads 537
4120 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov

Abstract:

Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 517
4119 Compact Finite Difference Schemes for Fourth Order Parabolic Partial Differential Equations

Authors: Sufyan Muhammad

Abstract:

Recently, in achieving highly efficient but at the same time highly accurate solutions has become the major target of numerical analyst community. The concept is termed as compact schemes and has gained great popularity and consequently, we construct compact schemes for fourth order parabolic differential equations used to study vibrations in structures. For the superiority of newly constructed schemes, we consider range of examples. We have achieved followings i.e. (a) numerical scheme utilizes minimum number of stencil points (which means new scheme is compact); (b) numerical scheme is highly accurate (which means new scheme is reliable) and (c) numerical scheme is highly efficient (which means new scheme is fast).

Keywords: central finite differences, compact schemes, Bernoulli's equations, finite differences

Procedia PDF Downloads 288