Search results for: higher order thinking skills
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25277

Search results for: higher order thinking skills

16427 A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes

Authors: R. Ziaie Moayed, S. Taghvamanesh

Abstract:

So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors N

Keywords: bearing capacity, bearing capacity factor Nγ, irregular foundations, shape factor

Procedia PDF Downloads 134
16426 Microstructure of Hydrogen Permeation Barrier Coatings

Authors: Motonori Tamura

Abstract:

Ceramics coatings consisting of fine crystal grains, with diameters of about 100 nm or less, provided superior hydrogen-permeation barriers. Applying TiN, TiC or Al₂O₃ coatings on a stainless steel substrate reduced the hydrogen permeation by a factor of about 100 to 5,000 compared with uncoated substrates. Effect of the microstructure of coatings on hydrogen-permeation behavior is studied. The test specimens coated with coatings, with columnar crystals grown vertically on the substrate, tended to exhibit higher hydrogen permeability. The grain boundaries of the coatings became trap sites for hydrogen, and microcrystalline structures with many grain boundaries are expected to provide effective hydrogen-barrier performance.

Keywords: hydrogen permeation, tin coating, microstructure, crystal grain, stainless steel

Procedia PDF Downloads 372
16425 Study and Analyze of Metallic Glasses for Biomedical Applications: From Soft to Bone Tissue Engineering

Authors: A. Monfared, S. Faghihi

Abstract:

Metallic glasses (MGs) are newcomers in the field of metals that show great potential for soft and bone tissue engineering due to the amorphous structure that endows unique properties. Up to now, various MGs based on Ti, Zr, Mg, Zn, Fe, Ca, and Sr in the form of a ribbon, bulk, thin-film, and powder have been investigated for biomedical purposes. This article reviews the compositions and biomedical properties of MGs as well as analyzes results in order to guide new approaches and future development of MGs.

Keywords: metallic glasses, biomaterials, biocompatibility, biocorrosion

Procedia PDF Downloads 197
16424 Articulating the Colonial Relation, a Conversation between Afropessimism and Anti-Colonialism

Authors: Thomas Compton

Abstract:

As Decolonialism becomes an important topic in Political Theory, the rupture between the colonized and the colonist relation has lost attention. Focusing on the anti-colonial activist Madhi Amel, we shall consider his attention to the permanence of the colonial relation and how it preempts Frank Wilderson’s formulation of (white) culturally necessary Anti-Black violence. Both projects draw attention away from empirical accounts of oppression, instead focusing on the structural relation which precipitates them. As Amel says that we should stop thinking of the ‘underdeveloped’ as beyond the colonial relation, Wilderson says we should stop think of the Black rights that have surpassed the role of the slave. However, Amel moves beyond his idol Althusser’s Structuralism toward a formulation of the colonial relation as source of domination. Our analysis will take a Lacanian turn in considering how this non-relation was formulated as a relation how this space of negativity became a ideological opportunity for Colonial domination. Wilderson’s work shall problematise this as we conclude with his criticisms of Structural accounts for the failure to consider how Black social death exists as more than necessity but a cite of white desire. Amel, a Lebanese activist and scholar (re)discovered by Hicham Safieddine, argues colonialism is more than the theft of land, but instead a privatization of collective property and form of investment which (re)produces the status of the capitalist in spaces ‘outside’ the market. Although Amel was a true Marxist-Leninsist, who exposited the economic determinacy of the Colonial Mode of Production, we are reading this account through Alenka Zupančič’s reformulation of the ‘invisible hand job of the market’. Amel points to the signifier ‘underdeveloped’ as buttressed on a pre-colonial epistemic break, as the Western investor (debt collector) sees the (post?) colony narcissistic image. However, the colony can never become site of class conflict, as the workers are not unified but existing between two countries. In industry, they are paid in Colonial subjectivisation, the promise of market (self)pleasure, at home, they are refugees. They are not, as Wilderson states, in the permanent social death of the slave, but they are less than the white worker. This is formulated as citizen (white), non-citizen (colonized), anti-citizen (Black/slave). Here we may also think of how indentured Indians were used as instruments of colonial violence. Wilderson’s aphorism “there is no analogy to anti-Black violence” lays bare his fundamental opposition between colonial and specifically anti-Black violence. It is not only that the debt collector, landowner, or other owners of production pleasures themselves as if their hand is invisible. The absolute negativity between colony and colonized provides a new frontier for desire, the development of a colonial mode of production. An invention inside the colonial structure that is generative of class substitution. We shall explore how Amel ignores the role of the slave but how Wilderson forecloses the history African anti-colonial.

Keywords: afropessimism, fanon, marxism, postcolonialism

Procedia PDF Downloads 139
16423 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 104
16422 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling

Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade

Abstract:

Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.

Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis

Procedia PDF Downloads 300
16421 The Sources of Anti-Immigrant Sentiments in Russia

Authors: Anya Glikman, Anastasia Gorodzeisky

Abstract:

Since the late 1990th labor immigration and its consequences on the society have become one of the most frequently discussed and debated issues in Russia. Social scientists point that the negative attitudes towards immigrants among Russian majority population is widespread, and their level, at least, twice as high as their level in most other European countries. Moreover, recent study by Gorodzeisky, Glikman and Maskyleison (2014) demonstrates that the two sets of individual level predictors of anti-foreigner sentiment – socio-economic status and conservative views and ideologies – that have been repeatedly proved in research in Western countries are not effective in predicting of anti-foreigner sentiment in Post-Socialist Russia. Apparently, the social mechanisms underlying anti-foreigner sentiment in Western countries, which are characterized by stable regimes and relatively long immigration histories, do not play a significant role in the explanation of anti-foreigner sentiment in Post-Socialist Russia. The present study aims to examine alternative possible sources of anti-foreigner sentiment in Russia while controlling for socio-economic position of individuals and conservative views. More specifically, following the research literature on the topic worldwide, we aim to examine whether and to what extent human values (such as tradition, universalism, safety and power), ethnic residential segregation, fear of crime and exposure to mass media affect anti-foreigner sentiments in Russia. To do so, we estimate a series of multivariate regression equations using the data obtained from 2012 European Social Survey. The national representative sample consists of 2337 Russian born respondents. Descriptive results reveal that about 60% percent of Russians view the impact of immigrants on the country in negative terms. Further preliminary analysis show that anti-foreigner sentiments are associated with exposer to mass media as well as with fear of crime. Specifically, respondents who devoted more time watching news on TV channels and respondents who express higher levels of fear of crime tend to report higher levels of anti-immigrants sentiments. The findings would be discussed in light of sociological perspective and the context of Russian society.

Keywords: anti-immigrant sentiments, fear of crime, human values, mass media, Russia

Procedia PDF Downloads 443
16420 Full Potential Calculation of Structural and Electronic Properties of Perovskite BiAlO3 and BiGaO3

Authors: M. Harmel, H. Khachai

Abstract:

The first principles within the full potential linearized augmented plane wave (FP-LAPW) method were applied to study the structural and electronic properties of cubic perovskite-type compounds BiAlO3 and BiGaO3. The lattice constant, bulk modulus, its pressure derivative, band structure and density of states were obtained. The results show that BiGaO3 should exhibit higher hardness and stiffness than BiAlO3. The Al–O or Ga–O bonds are typically covalent with a strong hybridization as well as Bi–O ones that have a significant ionic character. Both materials are weakly ionic and exhibit wide and indirect band gaps, which are typical of insulators.

Keywords: DFT, Ab initio, electronic structure, Perovskite structure, ferroelectrics

Procedia PDF Downloads 384
16419 Restoration of Steppes in Algeria: Case of the Stipa tenacissima L. Steppe

Authors: H. Kadi-Hanifi, F. Amghar

Abstract:

Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil proprieties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas.

Keywords: Algeria, arid, desertification, pastoral management, soil fertility

Procedia PDF Downloads 178
16418 Increased Circularity in Metals Production Using the Ausmelt TSL Process

Authors: Jacob Wood, David Wilson, Stephen Hughes

Abstract:

The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.

Keywords: ausmelt TSL, smelting, circular economy, energy efficiency

Procedia PDF Downloads 221
16417 Increased Efficiency during Oxygen Carrier Aided Combustion of Municipal Solid Waste in an Industrial Scaled Circulating Fluidized Bed-Boiler

Authors: Angelica Corcoran, Fredrik Lind, Pavleta Knutsson, Henrik Thunman

Abstract:

Solid waste volumes are at current predominately deposited on landfill. Furthermore, the impending climate change requires new solutions for a sustainable future energy mix. Currently, solid waste is globally utilized to small extent as fuel during combustion for heat and power production. Due to its variable composition and size, solid waste is considered difficult to combust and requires a technology with high fuel flexibility. One of the commercial technologies used for combustion of such difficult fuels is circulating fluidized beds (CFB). In a CFB boiler, fine particles of a solid material are used as 'bed material', which is accelerated by the incoming combustion air that causes the bed material to fluidize. The chosen bed material has conventionally been silica sand with the main purpose of being a heat carrier, as it transfers heat released by the combustion to the heat-transfer surfaces. However, the release of volatile compounds occurs rapidly in comparison with the lateral mixing in the combustion chamber. To ensure complete combustion a surplus of air is introduced, which decreases the total efficiency of the boiler. In recent years, the concept of partly or entirely replacing the silica sand with an oxygen carrier as bed material has been developed. By introducing an oxygen carrier to the combustion chamber, combustion can be spread out both temporally and spatially in the boiler. Specifically, the oxygen carrier can take up oxygen from the combustion air where it is in abundance and release it to combustible gases where oxygen is in deficit. The concept is referred to as oxygen carrier aided combustion (OCAC) where the natural ore ilmenite (FeTiO3) has been the oxygen carrier used. The authors have validated the oxygen buffering ability of ilmenite during combustion of biomass in Chalmers 12-MWth CFB boiler in previous publications. Furthermore, the concept has been demonstrated on full industrial scale during combustion of municipal solid waste (MSW) in E.ON’s 75 MWth CFB boiler. The experimental campaigns have showed increased mass transfer of oxygen inside the boiler when combustion both biomass and MSW. As a result, a higher degree of burnout is achieved inside the combustion chamber and the plant can be operated at a lower surplus of air. Moreover, the buffer of oxygen provided by the oxygen carrier makes the system less sensitive to disruptions in operation. In conclusion, combusting difficult fuels with OCAC results in higher operation stability and an increase in boiler efficiency.

Keywords: OCAC, ilmenite, combustion, CFB

Procedia PDF Downloads 229
16416 The Politics and Consequences of Decentralized Vocational Education: The Modified System of Vocational Studies in Ghana

Authors: Nkrumak Micheal Atta Ofori

Abstract:

The Vocational System is a decentralized Studies System implemented in Ghana as vocation studies strategy for grassroot that focuses on providing individuals with the specific skills, knowledge, and training necessary for a particular trade, craft, profession, or occupation. This article asks how devolution of vocational studies to local level authorities produces responsive and accountable representation and sustainable vocational learning under the vocational Studies System. It focuses on two case studies: Asokore Mampong and Atwima kwanwoma Municipal. Then, the paper asks how senior high school are developing new material and social practices around the vocational studies System to rebuild their livelihoods and socio-economic wellbeing. Here, the article focusses on Kumasi District, drawing lessons for the two other cases. The article shows how the creation of representative groups under the Vocational Studies System provides the democratic space necessary for effective representation of community aspirations. However, due to elite capture, the interests of privilege few people are promoted. The state vocational training fails to devolve relevant and discretionary resources to local teachers and do not follow the prescribed policy processes of the Vocational Studies System. Hence, local teachers are unable to promote responsive and accountable representation. Rural communities continue to show great interest in the Vocational Studies System, but the interest is bias towards gaining access to vocational training schools for advancing studies. There is no active engagement of the locals in vocational training, and hence, the Vocational Studies System exists only to promote individual interest of communities. This article shows how ‘failed’ interventions can gain popular support for rhetoric and individual gains.

Keywords: vocational studies system, devolution of vocational studies, local-level authorities, senior high schools and vocational learning, community aspirations and representation

Procedia PDF Downloads 53
16415 Growth Stimulating Effects of Aspilia africana Fed to Female Pseudo-Ruminant Herbivores (Rabbits) at Different Physiological States

Authors: Nseabasi Nsikakabasi Etim

Abstract:

In recent times, there has been a significant shortfall in between the production and supply of animal protein to meet the ever increasing population. To meet the increasing demand for animal protein, there is a need to focus attention on the production of livestock whose nutritional requirement does not put much strain on the limited sources of feed ingredients to which men subscribe. An example of such livestock is the rabbit. Rabbit is a pseudo-ruminant herbivore which utilizes much undigested and unabsorbed feed materials as sources of nutrient for maintenance and production. Thus, this study was conducted to investigate the effects of feeding Aspilia africana as forage on the growth rates of female pseudo-ruminant herbivores (rabbits) at different physiological states. Thirty (30) Dutch breed rabbit does of 5–6 months of age were used for the experiment which was conducted in a completely randomized design for four months. The rabbits were divided into three treatment groups, ten does per treatment group; which consisted of mixed forages (Centrosema pubescent (200g), Panicum maximum (200g) and Ipomea batatas leaves (100g) without Aspilia africana (T1; control), fresh Aspilia africana (500g/dose/day) (T2) and wilted Aspilia africana (500g/dose/day) (T3). Rabbits in all treatment groups received the same concentrate (300g/animal/day) throughout the period of the study and mixed forages from the commencement of the experiment till the does kindled. After parturition, fresh and wilted Aspilia africana were introduced in treatments 2 and three respectively, whereas the control group continued on mixed forages throughout the study. The result of the study revealed that the initial average body weight of the rabbit does was 1.74kg. At mating and gestation periods, the body weights of the does in T2 was significantly higher (P<0.05) than the rest. There were no significant differences (P<0.05) in the body weights of does at kindling between the various treatment groups. During the physiological states of lactation, weaning and re-mating, the control group (T1) had significantly lower body weight than those of the treated groups (T2 and T3). Furthermore, T2 had significantly higher body weight than T3. The study revealed that Aspilia africana; mainly the fresh leaves have greater growth stimulating effects when fed to pseudo-ruminants (rabbits), thereby enhancing body weights of does during lactation and weaning.

Keywords: Aspilia africana, herbivores, pseudo-ruminants, physiological states

Procedia PDF Downloads 676
16414 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors

Authors: Huda Al Shuaily, Karen Renaud

Abstract:

Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.

Keywords: pattern, SQL, learning, model

Procedia PDF Downloads 244
16413 Railway Composite Flooring Design: Numerical Simulation and Experimental Studies

Authors: O. Lopez, F. Pedro, A. Tadeu, J. Antonio, A. Coelho

Abstract:

The future of the railway industry lies in the innovation of lighter, more efficient and more sustainable trains. Weight optimizations in railway vehicles allow reducing power consumption and CO₂ emissions, increasing the efficiency of the engines and the maximum speed reached. Additionally, they reduce wear of wheels and rails, increase the space available for passengers, etc. Among the various systems that integrate railway interiors, the flooring system is one which has greater impact both on passenger safety and comfort, as well as on the weight of the interior systems. Due to the high weight saving potential, relative high mechanical resistance, good acoustic and thermal performance, ease of modular design, cost-effectiveness and long life, the use of new sustainable composite materials and panels provide the latest innovations for competitive solutions in the development of flooring systems. However, one of the main drawbacks of the flooring systems is their relatively poor resistance to point loads. Point loads in railway interiors can be caused by passengers or by components fixed to the flooring system, such as seats and restraint systems, handrails, etc. In this way, they can originate higher fatigue solicitations under service loads or zones with high stress concentrations under exceptional loads (higher longitudinal, transverse and vertical accelerations), thus reducing its useful life. Therefore, to verify all the mechanical and functional requirements of the flooring systems, many physical prototypes would be created during the design phase, with all of the high costs associated with it. Nowadays, the use of virtual prototyping methods by computer-aided design (CAD) and computer-aided engineering (CAE) softwares allow validating a product before committing to making physical test prototypes. The scope of this work was to current computer tools and integrate the processes of innovation, development, and manufacturing to reduce the time from design to finished product and optimise the development of the product for higher levels of performance and reliability. In this case, the mechanical response of several sandwich panels with different cores, polystyrene foams, and composite corks, were assessed, to optimise the weight and the mechanical performance of a flooring solution for railways. Sandwich panels with aluminum face sheets were tested to characterise its mechanical performance and determine the polystyrene foam and cork properties when used as inner cores. Then, a railway flooring solution was fully modelled (including the elastomer pads to provide the required vibration isolation from the car body) and perform structural simulations using FEM analysis to comply all the technical product specifications for the supply of a flooring system. Zones with high stress concentrations are studied and tested. The influence of vibration modes on the comfort level and stability is discussed. The information obtained with the computer tools was then completed with several mechanical tests performed on some solutions, and on specific components. The results of the numerical simulations and experimental campaign carried out are presented in this paper. This research work was performed as part of the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through COMPETE 2020.

Keywords: cork agglomerate core, mechanical performance, numerical simulation, railway flooring system

Procedia PDF Downloads 165
16412 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts

Authors: Xinyue Jiao, Yu-Ren Lin

Abstract:

Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.

Keywords: argumentation, collaborative learning, scientific concepts, web-based learning

Procedia PDF Downloads 94
16411 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, resovist, field strength, relaxivity, signal intensity

Procedia PDF Downloads 344
16410 The Compliance of Safe-Work Behaviors among Undergraduate Nursing Students with Different Clinical Experiences

Authors: K. C. Wong, K. L. Siu, S. N. Ng, K. N. Yip, Y. Y. Yuen, K. W. Lee, K. W. Wong, C. C. Li, H. P. Lam

Abstract:

Background: Occupational injuries among nursing profession were found related to repeated bedside nursing care, such as transfer, lifting and manual handling patients from previous studies. Likewise, undergraduate nursing students are also exposed to potential safety hazard due to their similar work nature of registered nurses. Especially, those students who worked as Temporary undergraduate nursing students (TUNS) which is a part-time clinical job in hospitals in Hong Kong who mainly assisted in providing bedside cares appeared to at high risk of work-related injuries. Several studies suggested the level of compliance with safe work behaviors was highly associated with work-related injuries. Yet, it had been limitedly studied among nursing students. This study was conducted to assess and compare the compliance with safe work behaviors and the levels of awareness of different workplace safety issues between undergraduate nursing students with or without TUNS experiences. Methods: This is a quantitative descriptive study using convenience sampling. 362 undergraduate nursing students in Hong Kong were recruited. The Safe Work Behavior relating to Patient Handling (SWB-PH) was used to assess their compliance of safe-work behaviors and the level of awareness of different workplace safety issues. Results: The results showed that most of the participants (n=250, 69.1%) who were working as TUNS. However, students who worked as TUNS had significantly lower safe-work behaviors compliance (mean SWB-PH score = 3.64±0.54) than those did not worked as TUNS (SWB-PH score=4.21±0.54) (p<0.001). Particularly, these students had higher awareness to seek help and use assistive devices but lower awareness of workplace safety issues and awareness of proper work posture than students without TUNS experiences. The students with TUNS experiences had higher engagement in help-seeking behaviors might be possibly explained by their richer clinical experiences which served as a facilitator to seek help from clinical staff whenever necessary. Besides, these experienced students were more likely to bear risks for occupational injuries and worked alone when no available aid which might be related to the busy working environment, heightened work pressures and high expectations of TUNS. Eventually, students who worked as TUNS might target on completing the assigned tasks and gradually neglecting the occupational safety. Conclusion: The findings contributed to an understanding of the level of compliance with safe work behaviors among nursing students with different clinical experiences. The results might guide the modification of current safety protocols and the introduction of multiple clinical training courses to improve nursing student’s engagement in safe work behaviors.

Keywords: Occupational safety, Safety compliance, Safe-work behavior, Nursing students

Procedia PDF Downloads 130
16409 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 361
16408 Ecological Risk Assessment of Informal E-Waste Processing in Alaba International Market, Lagos, Nigeria

Authors: A. A. Adebayo, O. Osibanjo

Abstract:

Informal electronic waste (e-waste) processing is a crude method of recycling, which is on the increase in Nigeria. The release of hazardous substances such as heavy metals (HMs) into the environment during informal e-waste processing has been a major concern. However, there is insufficient information on environmental contamination from e-waste recycling, associated ecological risk in Alaba International Market, a major electronic market in Lagos, Nigeria. The aims of this study were to determine the levels of HMs in soil, resulting from the e-waste recycling; and also assess associated ecological risks in Alaba international market. Samples of soils (334) were randomly collected seasonally for three years from fourteen selected e-waste activity points and two control sites. The samples were digested using standard methods and HMs analysed by inductive coupled plasma optical emission. Ecological risk was estimated using Ecological Risk index (ER), Potential Ecological Risk index (RI), Index of geoaccumulation (Igeo), Contamination factor (Cf) and degree of contamination factor (Cdeg). The concentrations range of HMs (mg/kg) in soil were: 16.7-11200.0 (Pb); 14.3-22600.0 (Cu); 1.90-6280.0 (Ni), 39.5-4570.0 (Zn); 0.79-12300.0 (Sn); 0.02-138.0 (Cd); 12.7-1710.0 (Ba); 0.18-131.0 (Cr); 0.07-28.0 (V), while As was below detection limit. Concentrations range in control soils were 1.36-9.70 (Pb), 2.06-7.60 (Cu), 1.25-5.11 (Ni), 3.62-15.9 (Zn), BDL-0.56 (Sn), BDL-0.01 (Cd), 14.6-47.6 (Ba), 0.21–12.2 (Cr) and 0.22-22.2 (V). The trend in ecological risk index was in the order Cu > Pb > Ni > Zn > Cr > Cd > Ba > V. The potential ecological risk index with respect to informal e-waste activities were: burning > dismantling > disposal > stockpiling. The index of geo accumulation indices revealed that soils were extremely polluted with Cd, Cu, Pb, Zn and Ni. The contamination factor indicated that 93% of the studied areas have very high contamination status for Pb, Cu, Ba, Sn and Co while Cr and Cd were in the moderately contaminated status. The degree of contamination decreased in the order of Sn > Cu > Pb >> Zn > Ba > Co > Ni > V > Cr > Cd. Heavy metal contamination of Alaba international market environment resulting from informal e-waste processing was established. Proper management of e-waste and remediation of the market environment are recommended to minimize the ecological risks.

Keywords: Alaba international market, ecological risk, electronic waste, heavy metal contamination

Procedia PDF Downloads 183
16407 Iron Yoke Dipole with High Quality Field for Collector Ring FAIR

Authors: Tatyana Rybitskaya, Alexandr Starostenko, Kseniya Ryabchenko

Abstract:

Collector ring (CR) of FAIR project is a large acceptance storage ring and field quality plays a major role in the magnet design. The CR will use normal conducting dipole magnets. There will be 24 H-type sector magnets with a maximum field value of 1.6 T. The integrated over the length of the magnet field quality as a function of radius is ∆B.l/B.l = ±1x10⁻⁴. Below 1.6 T the value ∆B.l/B.l can be higher with a linear approximation up to ±2.5x10⁻⁴ at the field level of 0.8 T. An iron-dominated magnet with required field quality is produced with standard technology as the quality is dominated by the yoke geometry.

Keywords: conventional magnet, iron yoke dipole, harmonic terms, particle accelerators

Procedia PDF Downloads 133
16406 Islamic State: Franchising Jihad through the New Caliphate

Authors: Janiel David Melamed Visbal

Abstract:

The Islamic State has become one of the most remarkable threats for international security through their religious extremism and their establishment of a new caliphate by force. The main objective of this organization is to obtain territorial expansions beyond the Middle East and eventually to consolidate an Islamic global order based on their extremist ideology. This paper will conduct an analysis regarding how, over the past year, many jihadist organizations worldwide have pledged their alliagance to the Islamic State, transforming it into the most important jihadist franchise globally.

Keywords: Islamic state, franchise, jihad, Islamic fundamentalism, caliphate

Procedia PDF Downloads 338
16405 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: aluminum foam, composite panel, flexure, transport application

Procedia PDF Downloads 317
16404 Right to Information in Egypt and the Prospects of Renegotiating a New Social Order

Authors: Farida Ibrahim

Abstract:

Right to information is the public's right to know through having access to public information held by state bodies. Recognized as a cornerstone in transparent, participatory and open democracies, the right to information is increasingly perceived today as an emerging human right on the international level. While this right is conceptualized in a range of different contexts, the paper focuses on its conceptualization as a force for socio-economic change for disadvantaged groups. The paper's goal is study the instrumental capacity of this right in empowering the public to access state-held information pertinent to their socio-economic rights. In this regard, the paper views the right to information as an inclusionary tool that is capable of spurring inclusion for individuals excluded from the ambits of both: public participation and social justice. For exploring this, the paper examines the advocacy role played by civil society groups in furthering this instrumental capacity. In particular, the paper presents a focused account on the Egyptian case. While Egypt has recently adopted its constitutional provision on access to information, doubts arise on Egyptian citizens' genuine ability to access information held by state bodies. The politico-economic environment, long term culture of bureaucratic secrecy, and legal framework do not provide promising outcomes on access to public information. Within the particular context of the Egyptian case, this paper questions the extent to which civil society in Egypt is capable of instrumentally employing the political opportunity offered by the constitutional entitlement to information access for pressuring public authorities to disclose information. Through four lawsuits brought by civil society groups in Egypt, the paper argues that the right to information has instrumentally provided civil society actors with new domains of mobilization for furthering the realization of social and economic rights, and ultimately, for renegotiating a new social order lining the relationship between the Egyptian state and its citizens marginalized by socio-economic imbalances.

Keywords: civil society, Egypt, right to information, socio-economic rights

Procedia PDF Downloads 265
16403 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics

Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere

Abstract:

Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciences

Keywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet

Procedia PDF Downloads 122
16402 Reconstruction and Rejection of External Disturbances in a Dynamical System

Authors: Iftikhar Ahmad, A. Benallegue, A. El Hadri

Abstract:

In this paper, we have proposed an observer for the reconstruction and a control law for the rejection application of unknown bounded external disturbance in a dynamical system. The strategy of both the observer and the controller is designed like a second order sliding mode with a proportional-integral (PI) term. Lyapunov theory is used to prove the exponential convergence and stability. Simulations results are given to show the performance of this method.

Keywords: non-linear systems, sliding mode observer, disturbance rejection, nonlinear control

Procedia PDF Downloads 321
16401 Resilience of the American Agriculture Sector

Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald

Abstract:

This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.

Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector

Procedia PDF Downloads 73
16400 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.

Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach

Procedia PDF Downloads 180
16399 Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission

Authors: Kazumasa Kawasaki, Isamu Tsuji, Hiroshi Gunbara

Abstract:

A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained.

Keywords: alignment error, face gear, gear design, helicopter transmission, tooth contact analysis

Procedia PDF Downloads 420
16398 Autistic Traits and Multisensory Integration–Using a Size-Weight Illusion Paradigm

Authors: Man Wai Lei, Charles Mark Zaroff

Abstract:

Objective: A majority of studies suggest that people with Autism Spectrum Disorder (ASD) have multisensory integration deficits. However, normal and even supranormal multisensory integration abilities have also been reported. Additionally, little of this work has been undertaken utilizing a dimensional conceptualization of ASD; i.e., a broader autism phenotype. Utilizing methodology that controls for common potential confounds, the current study aimed to examine if deficits in multisensory integration are associated with ASD traits in a non-clinical population. The contribution of affective versus non-affective components of sensory hypersensitivity to multisensory integration was also examined. Methods: Participants were 147 undergraduate university students in Macau, a Special Administrative Region of China, of Chinese ethnicity, aged 16 to 21 (Mean age = 19.13; SD = 1.07). Participants completed the Autism-Spectrum Quotient, the Sensory Perception Quotient, and the Adolescent/Adult Sensory Profile, in order to measure ASD traits, non-affective, and affective aspects of sensory/perceptual hypersensitivity, respectively. In order to explore multisensory integration across visual and haptic domains, participants were asked to judge which one of two equally weighted, but different sized cylinders was heavier, as a means of detecting the presence of the size-weight illusion (SWI). Results: ASD trait level was significantly and negatively correlated with susceptibility to the SWI (p < 0.05); this correlation was not associated with either accuracy in weight discrimination or gender. Examining the top decile of the non-normally distributed SWI scores revealed a significant negative association with sensation avoiding, but not other aspects of effective or non-effective sensory hypersensitivity. Conclusion and Implications: Within the normal population, a greater degree of ASD traits is associated with a lower likelihood of multisensory integration; echoing was often found in individuals with a clinical diagnosis of ASD, and providing further evidence for the dimensional nature of this disorder. This tendency appears to be associated with dysphoric emotional reactions to sensory input.

Keywords: Autism Spectrum Disorder, dimensional, multisensory integration, size-weight illusion

Procedia PDF Downloads 468