Search results for: composite pavement structure
719 A Concept in Addressing the Singularity of the Emerging Universe
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times has been studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing an energy conversion mechanism. This is accomplished by establishing a state of energy called a “neutral state”, with an energy level which is referred to as “base energy” capable of converting into other states. Although it follows the same principles, the unique quanta state of the base energy allows it to be distinguishable from other states and have a uniform distribution at the ground level. Although the concept of base energy can be utilized to address the singularity issue, to establish a complete picture, the origin of the base energy should be also identified. This matter is the subject of the first study in the series “A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing” which is discussed in detail. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation
Procedia PDF Downloads 89718 Identification of Natural Liver X Receptor Agonists as the Treatments or Supplements for the Management of Alzheimer and Metabolic Diseases
Authors: Hsiang-Ru Lin
Abstract:
Cholesterol plays an essential role in the regulation of the progression of numerous important diseases including atherosclerosis and Alzheimer disease so the generation of suitable cholesterol-lowering reagents is urgent to develop. Liver X receptor (LXR) is a ligand-activated transcription factor whose natural ligands are cholesterols, oxysterols and glucose. Once being activated, LXR can transactivate the transcription action of various genes including CYP7A1, ABCA1, and SREBP1c, involved in the lipid metabolism, glucose metabolism and inflammatory pathway. Essentially, the upregulation of ABCA1 facilitates cholesterol efflux from the cells and attenuates the production of beta-amyloid (ABeta) 42 in brain so LXR is a promising target to develop the cholesterol-lowering reagents and preventative treatment of Alzheimer disease. Engelhardia roxburghiana is a deciduous tree growing in India, China, and Taiwan. However, its chemical composition is only reported to exhibit antitubercular and anti-inflammatory effects. In this study, four compounds, engelheptanoxides A, C, engelhardiol A, and B isolated from the root of Engelhardia roxburghiana were evaluated for their agonistic activity against LXR by the transient transfection reporter assays in the HepG2 cells. Furthermore, their interactive modes with LXR ligand binding pocket were generated by molecular modeling programs. By using the cell-based biological assays, engelheptanoxides A, C, engelhardiol A, and B showing no cytotoxic effect against the proliferation of HepG2 cells, exerted obvious LXR agonistic effects with similar activity as T0901317, a novel synthetic LXR agonist. Further modeling studies including docking and SAR (structure-activity relationship) showed that these compounds can locate in LXR ligand binding pocket in the similar manner as T0901317. Thus, LXR is one of nuclear receptors targeted by pharmaceutical industry for developing treatments of Alzheimer and atherosclerosis diseases. Importantly, the cell-based assays, together with molecular modeling studies suggesting a plausible binding mode, demonstrate that engelheptanoxides A, C, engelhardiol A, and B function as LXR agonists. This is the first report to demonstrate that the extract of Engelhardia roxburghiana contains LXR agonists. As such, these active components of Engelhardia roxburghiana or subsequent analogs may show important therapeutic effects through selective modulation of the LXR pathway.Keywords: Liver X receptor (LXR), Engelhardia roxburghiana, CYP7A1, ABCA1, SREBP1c, HepG2 cells
Procedia PDF Downloads 420717 Tackling Inequalities in Regional Health Care: Accompanying an Inter-Sectoral Cooperation Project between University Medicine and Regional Care Structures
Authors: Susanne Ferschl, Peter Holzmüller, Elisabeth Wacker
Abstract:
Ageing populations, advances in medical sciences and digitalization, diversity and social disparities, as well as the increasing need for skilled healthcare professionals, are challenging healthcare systems around the globe. To address these challenges, future healthcare systems need to center on human needs taking into account the living environments that shape individuals’ knowledge of and opportunities to access healthcare. Moreover, health should be considered as a common good and an integral part of securing livelihoods for all people. Therefore, the adoption of a systems approach, as well as inter-disciplinary and inter-sectoral cooperation among healthcare providers, are essential. Additionally, the active engagement of target groups in the planning and design of healthcare structures is indispensable to understand and respect individuals’ health and livelihood needs. We will present the research project b4 – identifying needs | building bridges | developing health care in the social space, which is situated within this reasoning and accompanies the cross-sectoral cooperation project Brückenschlag (building bridges) in a Bavarian district. Brückenschlag seeks to explore effective ways of health care linking university medicine (Maximalversorgung | maximum care) with regional inpatient, outpatient, rehabilitative, and preventive care structures (Regionalversorgung | regional care). To create advantages for both (potential) patients and the involved cooperation partners, project b4 qualitatively assesses needs and motivations among professionals, population groups, and political stakeholders at individual and collective levels. Besides providing an overview of the project structure as well as of regional population and healthcare characteristics, the first results of qualitative interviews conducted with different health experts will be presented. Interviewed experts include managers of participating hospitals, nurses, medical specialists working in the hospital and registered doctors operating in practices in rural areas. At the end of the project life and based on the identified factors relevant to the success -and also for failure- of participatory cooperation in health care, the project aims at informing other districts embarking on similar systems-oriented and human-centered healthcare projects. Individuals’ health care needs in dependence on the social space in which they live will guide the development of recommendations.Keywords: cross-sectoral collaboration in health care, human-centered health care, regional health care, individual and structural health conditions
Procedia PDF Downloads 101716 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines
Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk
Abstract:
Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper
Procedia PDF Downloads 181715 Aesthetics and Semiotics in Theatre Performance
Authors: Păcurar Diana Istina
Abstract:
Structured in three chapters, the article attempts an X-ray of the theatrical aesthetics, correctly understood through the emotions generated in the intimate structure of the spectator that precedes the triggering of the viewer’s perception and not through the superposition, unfortunately common, of the notion of aesthetics with the style in which a theater show is built. The first chapter contains a brief history of the appearance of the word aesthetic, the formulation of definitions for this new term, as well as its connections with the notions of semiotics, in particular with the perception of the message transmitted. Starting with Aristotle and Plato, and reaching Magritte, their interventions should not be interpreted in the sense that the two scientific concepts can merge into one discipline. The perception that is the object of everyone’s analysis, the understanding of meaning, the decoding of the messages sent, and the triggering of feelings that culminate in pleasure, shaping the aesthetic vision, are some elements that keep semiotics and aesthetics distinct, even though they share many methods of analysis. The compositional processes of aesthetic representation and symbolic formation are analyzed in the second part of the paper from perspectives that include or do not include historical, cultural, social, and political processes. Aesthetics and the organization of its symbolic process are treated, taking into account expressive activity. The last part of the article explores the notion of aesthetics in applied theater, more specifically in the theater show. Taking the postmodern approach that aesthetics applies to the creation of an artifact and the reception of that artifact, the intervention of these elements in the theatrical system must be emphasized –that is, the analysis of the problems arising in the stages of the creation, presentation, and reception, by the public, of the theater performance. The aesthetic process is triggered involuntarily, simultaneously, or before the moment when people perceive the meaning of the messages transmitted by the work of art. The finding of this fact makes the mental process of aesthetics similar or related to that of semiotics. No matter how perceived individually, beauty, the mechanism of production can be reduced to two. The first step presents similarities to Peirce’s model, but the process between signified and signified additionally stimulates the related memory of the evaluation of beauty, adding to the meanings related to the signification itself. Then, the second step, a process of comparison, is followed, in which one examines whether the object being looked at matches the accumulated memory of beauty. Therefore, even though aesthetics is derived from the conceptual part, the judgment of beauty and, more than that, moral judgment come to be so important to the social activities of human beings that it evolves as a visible process independent of other conceptual contents.Keywords: aesthetics, semiotics, symbolic composition, subjective joints, signifying, signified
Procedia PDF Downloads 109714 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform
Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy
Abstract:
A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing
Procedia PDF Downloads 172713 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 40712 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries
Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh
Abstract:
With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery
Procedia PDF Downloads 1573711 Structural and Biochemical Characterization of Red and Green Emitting Luciferase Enzymes
Authors: Wael M. Rabeh, Cesar Carrasco-Lopez, Juliana C. Ferreira, Pance Naumov
Abstract:
Bioluminescence, the emission of light from a biological process, is found in various living organisms including bacteria, fireflies, beetles, fungus and different marine organisms. Luciferase is an enzyme that catalyzes a two steps oxidation of luciferin in the presence of Mg2+ and ATP to produce oxyluciferin and releases energy in the form of light. The luciferase assay is used in biological research and clinical applications for in vivo imaging, cell proliferation, and protein folding and secretion analysis. The luciferase enzyme consists of two domains, a large N-terminal domain (1-436 residues) that is connected to a small C-terminal domain (440-544) by a flexible loop that functions as a hinge for opening and closing the active site. The two domains are separated by a large cleft housing the active site that closes after binding the substrates, luciferin and ATP. Even though all insect luciferases catalyze the same chemical reaction and share 50% to 90% sequence homology and high structural similarity, they emit light of different colors from green at 560nm to red at 640 nm. Currently, the majority of the structural and biochemical studies have been conducted on green-emitting firefly luciferases. To address the color emission mechanism, we expressed and purified two luciferase enzymes with blue-shifted green and red emission from indigenous Brazilian species Amydetes fanestratus and Phrixothrix, respectively. The two enzymes naturally emit light of different colors and they are an excellent system to study the color-emission mechanism of luciferases, as the current proposed mechanisms are based on mutagenesis studies. Using a vapor-diffusion method and a high-throughput approach, we crystallized and solved the crystal structure of both enzymes, at 1.7 Å and 3.1 Å resolution respectively, using X-ray crystallography. The free enzyme adopted two open conformations in the crystallographic unit cell that are different from the previously characterized firefly luciferase. The blue-shifted green luciferase crystalized as a monomer similar to other luciferases reported in literature, while the red luciferases crystalized as an octamer and was also purified as an octomer in solution. The octomer conformation is the first of its kind for any insect’s luciferase, which might be relate to the red color emission. Structurally designed mutations confirmed the importance of the transition between the open and close conformations in the fine-tuning of the color and the characterization of other interesting mutants is underway.Keywords: bioluminescence, enzymology, structural biology, x-ray crystallography
Procedia PDF Downloads 326710 Spectroscopic (Ir, Raman, Uv-Vis) and Biological Study of Copper and Zinc Complexes and Sodium Salt with Cichoric Acid
Authors: Renata Swislocka, Grzegorz Swiderski, Agata Jablonska-Trypuc, Wlodzimierz Lewandowski
Abstract:
Forming a complex of a phenolic compound with a metal not only alters the physicochemical properties of the ligand (including increase in stability or changes in lipophilicity), but also its biological activity, including antioxidant, antimicrobial and many others. As part of our previous projects, we examined the physicochemical and antimicrobial properties of phenolic acids and their complexes with metals naturally occurring in foods. Previously we studied the complexes of manganese(II), copper(II), cadmium(II) and alkali metals with ferulic, caffeic and p-coumaric acids. In the framework of this study, the physicochemical and biological properties of cicoric acid, its sodium salt, and complexes with copper and zinc were investigated. Cichoric acid is a derivative of both caffeic acid and tartaric acid. It has first been isolated from Cichorium intybus (chicory) but also it occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. For the study of spectroscopic and biological properties of cicoric acid, its sodium salt, and complexes with zinc and copper a variety of methods were used. Studies of antioxidant properties were carried out in relation to selected stable radicals (method of reduction of DPPH and reduction of FRAP). As a result, the structure and spectroscopic properties of cicoric acid and its complexes with selected metals in the solid state and in the solutions were defined. The IR and Raman spectra of cicoric acid displayed a number of bands that were derived from vibrations of caffeic and tartaric acids moieties. At 1746 and 1716 cm-1 the bands assigned to the vibrations of the carbonyl group of tartaric acid occurred. In the spectra of metal complexes with cichoric these bands disappeared what indicated that metal ion was coordinated by the carboxylic groups of tartaric acid. In the spectra of the sodium salt, a characteristic wide-band vibrations of carboxylate anion occurred. In the spectra of cicoric acid and its salt and complexes, a number of bands derived from the vibrations of the aromatic ring (caffeic acid) were assigned. Upon metal-ligand attachment, the changes in the values of the wavenumbers of these bands occurred. The impact of metals on the antioxidant properties of cicoric acid was also examined. Cichoric acid has a high antioxidant potential. Complexation by metals (zinc, copper) did not significantly affect its antioxidant capacity. The work was supported by the National Science Centre, Poland (grant no. 2015/17/B/NZ9/03581).Keywords: chicoric acid, metal complexes, natural antioxidant, phenolic acids
Procedia PDF Downloads 337709 Protective Effect of Ginger Root Extract on Dioxin-Induced Testicular Damage in Rats
Authors: Hamid Abdulroof Saleh
Abstract:
Background: Dioxins are one of the most widely distributed environmental pollutants. Dioxins consist of feedstock during the preparation of some industries, such as the paper industry as they can be produced in the atmosphere during the process of burning garbage and waste, especially medical waste. Dioxins can be found in the adipose tissues of animals in the food chain as well as in human breast milk. 2,3,7,8-Tetrachlorodibenzo-pdioxin (TCDD) is the most toxic component of a large group of dioxins. Humans are exposed to TCDD through contaminated food items like meat, fish, milk products, eggs etc. Recently, natural formulations relating to reducing or eliminating TCDD toxicity have been in focus. Ginger rhizome (Zingiber officinale R., family: Zingiberaceae), is used worldwide as a spice. Both antioxidative and androgenic activity of Z. officinale was reported in animal models. Researchers showed that ginger oil has dominative protective effect on DNA damage and might act as a scavenger of oxygen radical and might be used as an antioxidant. Aim of the work: The present study was undertaken to evaluate the toxic effect of TCDD on the structure and histoarchitecture of the testis and the protective role of co-administration of ginger root extract to prevent this toxicity. Materials & Methods: Male adult rats of Sprague-Dawley strain were assigned to four groups, eight rats in each; control group, dioxin treated group (given TCDD at the dose of 100 ng/kg Bwt/day by gavage), ginger treated group (given 50 mg/kg Bwt/day of ginger root extract by gavage), dioxin and ginger treated group (given TCDD at the dose of 100 ng/kg Bwt/day and 50 mg/kg Bwt/day of ginger root extract by gavages). After three weeks, rats were weighed and sacrificed where testis were removed and weighted. The testes were processed for routine paraffin embedding and staining. Tissue sections were examined for different morphometric and histopathological changes. Results: Dioxin administration showed a harmful effects in the body, testis weight and other morphometric parameters of the testis. In addition, it produced varying degrees of damage to the seminiferous tubules, which were shrunken and devoid of mature spermatids. The basement membrane was disorganized with vacuolization and loss of germinal cells. The co-administration of ginger root extract showed obvious improvement in the above changes and showed reversible morphometric and histopathological changes of the seminiferous tubules. Conclusion: Ginger root extract treatment in this study was successful in reversing all morphometric and histological changes of dioxin testicular damage. Therefore, it showed a protective effect on testis against dioxin toxicity.Keywords: dioxin, ginger, rat, testis
Procedia PDF Downloads 418708 Healthy Architecture Applied to Inclusive Design for People with Cognitive Disabilities
Authors: Santiago Quesada-García, María Lozano-Gómez, Pablo Valero-Flores
Abstract:
The recent digital revolution, together with modern technologies, is changing the environment and the way people interact with inhabited space. However, in society, the elderly are a very broad and varied group that presents serious difficulties in understanding these modern technologies. Outpatients with cognitive disabilities, such as those suffering from Alzheimer's disease (AD), are distinguished within this cluster. This population group is in constant growth, and they have specific requirements for their inhabited space. According to architecture, which is one of the health humanities, environments are designed to promote well-being and improve the quality of life for all. Buildings, as well as the tools and technologies integrated into them, must be accessible, inclusive, and foster health. In this new digital paradigm, artificial intelligence (AI) appears as an innovative resource to help this population group improve their autonomy and quality of life. Some experiences and solutions, such as those that interact with users through chatbots and voicebots, show the potential of AI in its practical application. In the design of healthy spaces, the integration of AI in architecture will allow the living environment to become a kind of 'exo-brain' that can make up for certain cognitive deficiencies in this population. The objective of this paper is to address, from the discipline of neuroarchitecture, how modern technologies can be integrated into everyday environments and be an accessible resource for people with cognitive disabilities. For this, the methodology has a mixed structure. On the one hand, from an empirical point of view, the research carries out a review of the existing literature about the applications of AI to build space, following the critical review foundations. As a unconventional architectural research, an experimental analysis is proposed based on people with AD as a resource of data to study how the environment in which they live influences their regular activities. The results presented in this communication are part of the progress achieved in the competitive R&D&I project ALZARQ (PID2020-115790RB-I00). These outcomes are aimed at the specific needs of people with cognitive disabilities, especially those with AD, since, due to the comfort and wellness that the solutions entail, they can also be extrapolated to the whole society. As a provisional conclusion, it can be stated that, in the immediate future, AI will be an essential element in the design and construction of healthy new environments. The discipline of architecture has the compositional resources to, through this emerging technology, build an 'exo-brain' capable of becoming a personal assistant for the inhabitants, with whom to interact proactively and contribute to their general well-being. The main objective of this work is to show how this is possible.Keywords: Alzheimer’s disease, artificial intelligence, healthy architecture, neuroarchitecture, architectural design
Procedia PDF Downloads 61707 In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures
Authors: Francisco J. Cedano, Laura M. Pinzón, Camila I. Castro, Felipe Salcedo, Juan P. Casas, Juan C. Briceño
Abstract:
Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours.Keywords: bioadhesive, bone adhesive, calcium carbonate, chitosan, hydroxyapatite, glutaraldehyde
Procedia PDF Downloads 321706 Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado
Authors: Wesley A. Saltarelli, Nicolas R. Finkler, Adriana C. P. Miwa, Maria C. Calijuri, Davi G. F. Cunha
Abstract:
The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state.Keywords: low-order streams, metabolism, net primary production, trophic state
Procedia PDF Downloads 258705 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 60704 Role of Community Youths in Conservation of Forests and Protected Areas of Bangladesh
Authors: Obaidul Fattah Tanvir, Zinat Ara Afroze
Abstract:
Community living adjacent to forests and Protected Areas, especially in South Asian countries, have a common practice in extracting resources for their living and livelihoods. This extraction of resources, because the way it is done, destroys the biophysical features of the area. Deforestation, wildlife poaching, illegal logging, unauthorized hill cutting etc. are some of the serious issues of concern for the sustainability of the natural resources that has a direct impact on environment and climate as a whole. To ensure community involvement in conservation initiatives of the state, community based forest management, commonly known as Comanagement, has been in practice in 6 South Asian countries. These are -India, Nepal, Sri Lanka, Pakistan, Bhutan and Bangladesh. Involving community in forestry management was initiated first in Bangladesh in 1979 and reached as an effective co-management approach through a several paradigm shifts. This idea of Comanagement has been institutionalized through a Government Order (GO) by the Ministry of Environment and Forests, Government of Bangladesh on November 23, 2009. This GO clearly defines the structure and functions of Co-management and its different bodies. Bangladesh Forest Department has been working in association with community to conserve and manage the Forests and Protected areas of Bangladesh following this legal document. Demographically young people constitute the largest segment of population in Bangladesh. This group, if properly sensitized, can produce valuable impacts on the conservation initiatives, both by community and government. This study traced the major factors that motivate community youths to work effectively with different tiers of comanagement organizations in conservation of forests and Protected Areas of Bangladesh. For the purpose of this study, 3 FGDs were conducted with 30 youths from the community living around the Protected Areas of Cox’s bazar, South East corner of Bangladesh, who are actively involved in Co-management organizations. KII were conducted with 5 key officials of Forest Department stationed at Cox’s Bazar. 2 FGDs were conducted with the representatives of 7 Co-management organizations working in Cox’s Bazar region and approaches of different community outreach activities conducted for forest conservation by 3 private organizations and Projects have been reviewed. Also secondary literatures were reviewed for the history and evolution of Co-management in Bangladesh and six South Asian countries. This study found that innovative community outreach activities that are financed by public and private sectors involving youths and community as a whole have played a pivotal role in conservation of forests and Protected Areas of the region. This approach can be replicated in other regions of Bangladesh as well as other countries of South Asia where Co-Management exists in practice.Keywords: community, co-management, conservation, forests, protected areas, youth
Procedia PDF Downloads 281703 Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas
Authors: Auzair Mehmood, Mohammad Arif
Abstract:
The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites.Keywords: exploration, fractionation, Himalayas, pegmatites, rare earth elements
Procedia PDF Downloads 204702 Vitamin D Levels of Patients with Rheumatoid Arthritis in Kosova
Authors: Mjellma Rexhepi, Blerta Rexhepi Kelmendi, Blana Krasniqi, Shaip Krasniqi
Abstract:
Rheumatoid arthritis is a chronic disease that causes inflammation of the joints which can be so severe that can cause not only deformities but also impairment of function that limits movement. This also contributes to the pain that accompanies this disease. This remains a problematic and challenging disease of modern medicine because treatment is still symptomatic. The main purpose of drug treatment is to reduce the activity of the disease, achieve remission, avoid disability and death. The etiology of the disease is idiopathic, but can also be linked to genetic, nongenetic factors such as hormonal, environmental or infectious. Current scientific evidence shows that vitamin D plays an important role in immune regulation mechanisms. Lack of this vitamin has been linked to loss of immune tolerance and the appearance of autoimmune processes, including rheumatoid arthritis. The purpose of the work was to define Vitamin D in patients hospitalized with rheumatoid arthritis in University Clinical Center of Kosova, as a basis of their connection with lifestyle and physical inactivity. The sample for the work was selected from patients with criteria met for rheumatoid arthritis who were hospitalized at the tertiary level of health care in Kosova. During the work have been investigated 100 consecutive patients fulfilling diagnostic criteria for rheumatoid arthritis, whereas in addition to the general characteristics are also determined the values of vitamin D at the beginning of hospitalization. The average age of the sample analyzed was 50.9±5.7 years old, with an average duration of rheumatoid arthritis disease 7.8±3.4 years. At the beginning of hospitalization, before treatment was initiated, the average value of vitamin D was 15.86±3.43, which according to current reference values is classified into the category of insufficient values. Correlating the duration of the disease, from the time of diagnosis to the day of hospitalization, on one side and the level of vitamin D on the other side, the negative correlation of a lower degree derived (r =-0.1). Physical activity affects the concentration of vitamin D in the blood through increased metabolism of fat and the release of vitamin D and its metabolites from adipose tissue. To now it is evident that physical activity is also accompanied by higher levels of vitamin D. In patients with rheumatoid arthritis, vitamin D levels were low compared to normal. Future works should be oriented toward investigating in detail the bone structure, quality of life and pain in patients with rheumatoid arthritis. More detailed scientific projects, with larger numbers of participants, should be designed for the future to clarify more possible mechanisms as factors related to this phenomenon such as inactivity, lifestyle and the duration of the disease, as well as the importance of keeping vitamin D values at normal limits.Keywords: hospitalization, lifestyle, rheumatoid arthritis, vitamin D
Procedia PDF Downloads 15701 A Non-Invasive Method for Assessing the Adrenocortical Function in the Roan Antelope (Hippotragus equinus)
Authors: V. W. Kamgang, A. Van Der Goot, N. C. Bennett, A. Ganswindt
Abstract:
The roan antelope (Hippotragus equinus) is the second largest antelope species in Africa. These past decades, populations of roan antelope are declining drastically throughout Africa. This situation resulted in the development of intensive breeding programmes for this species in Southern African, where they are popular game ranching herbivores in with increasing numbers in captivity. Nowadays, avoidance of stress is important when managing wildlife to ensure animal welfare. In this regard, a non-invasive approach to monitor the adrenocortical function as a measure of stress would be preferable, since animals are not disturbed during sample collection. However, to date, a non-invasive method has not been established for the roan antelope. In this study, we validated a non-invasive technique to monitor the adrenocortical function in this species. Herein, we performed an adrenocorticotropic hormone (ACTH) stimulation test at Lapalala reserve Wilderness, South Africa, using adult captive roan antelopes to determine the stress-related physiological responses. Two individually housed roan antelope (a male and a female) received an intramuscular injection with Synacthen depot (Norvatis) loaded into a 3ml syringe (Pneu-Dart) at an estimated dose of 1 IU/kg. A total number of 86 faecal samples (male: 46, female: 40) were collected 5 days before and 3 days post-injection. All samples were then lyophilised, pulverized and extracted with 80% ethanol (0,1g/3ml) and the resulting faecal extracts were analysed for immunoreactive faecal glucocorticoid metabolite (fGCM) concentrations using five enzyme immunoassays (EIAs); (i) 11-oxoaetiocholanolone I (detecting 11,17 dioxoandrostanes), (ii) 11-oxoaetiocholanolone II (detecting fGCM with a 5α-pregnane-3α-ol-11one structure), (iii) a 5α-pregnane-3β-11β,21-triol-20-one (measuring 3β,11β-diol CM), (iv) a cortisol and (v) a corticosterone. In both animals, all EIAs detected an increase in fGCM concentration 100% post-ACTH administration. However, the 11-oxoaetiocholanolone I EIA performed best, with a 20-fold increase in the male (baseline: 0.384 µg/g, DW; peak: 8,585 µg/g DW) and a 17-fold in the female (baseline: 0.323 µg/g DW, peak: 7,276 µg/g DW), measured 17 hours and 12 hours post-administration respectively. These results are important as the ability to assess adrenocortical function non-invasively in roan can now be used as an essential prerequisite to evaluate the effects of stressful circumstances; such as variation of environmental conditions or reproduction in other to improve management strategies for the conservation of this iconic antelope species.Keywords: adrenocorticotropic hormone challenge, adrenocortical function, captive breeding, non-invasive method, roan antelope
Procedia PDF Downloads 145700 The Emergence of Cold War Heritage: United Kingdom Cold War Bunkers and Sites
Authors: Peter Robinson, Milka Ivanova
Abstract:
Despite the growing interest in the Cold War period and heritage, little attention has been paid to the presentation and curatorship of Cold War heritage in eastern or western Europe. In 2021 Leeds Beckett University secured a British Academy Grant to explore visitor experiences, curatorship, emotion, and memory at Cold War-related tourist sites, comparing the perspectives of eastern and western European sites through research carried out in the UK and Bulgaria. The research explores the themes of curatorship, experience, and memory. Many of the sites included in the research in the UK-based part of the project are nuclear bunkers that have been decommissioned and are now open to visitors. The focus of this conference abstract is one of several perspectives drawn from a British Academy Grant-funded project exploring curatorship, visitor experience and nostalgia and memory in former cold war spaces in the UK, bringing together critical comparisons between western and eastern European sites. The project identifies specifically the challenges of ownership, preservation and presentation and discusses the challenges facing those who own, manage, and provide access to cold war museums and sites. The research is underpinned by contested issues of authenticity and ownership, discussing narrative accounts of those involved in caring for and managing these sites. The research project draws from interviews with key stakeholders, site observations, visitor surveys, and content analysis of Trip advisor posts. Key insights from the project include the external challenges owners and managers face from a lack of recognition of and funding for important Cold War sites in the UK that are at odds with interest shown in cold war sites by visitors to Cold War structures and landmarks. The challenges center on the lack of consistent approaches toward cold war heritage conservation, management, and ownership, lack of curatorial expertise and over-reliance on no-expert interpretation and presentation of heritage, the effect of the passage of time on personal connections to cold war heritage sites, the dissipating technological knowledge base, the challenging structure that does not lend themselves easily as visitor attractions or museums, the questionable authenticity of artifacts, the limited archival material, and quite often limited budgets. A particularly interesting insight focusing on nuclear bunkers has been on the difficulties in site reinterpretation because of the impossibility of fully exploring the enormity of nuclear war as a consistent threat of the Cold War. Further insights from the research highlight the secrecy of many of the sites as a key marketing strategy, particularly in relation to the nuclear bunker sites included in the project.Keywords: cold war, curatorship, heritage, nuclear bunkers.
Procedia PDF Downloads 77699 Communication Skills Training in Continuing Nursing Education: Enabling Nurses to Improve Competency and Performance in Communication
Authors: Marzieh Moattari Mitra Abbasi, Masoud Mousavinasab, Poorahmad
Abstract:
Background: Nurses in their daily practice need to communicate with patients and their families as well as health professional team members. Effective communication contributes to patients’ satisfaction which is a fundamental outcome of nursing practice. There are some evidences in support of patients' dissatisfaction with nurses’ performance in communication process. Therefore improving nurses’ communication skills is a necessity for nursing scholars and nursing administrators. Objective: The aim of the present study was to evaluate the effect of a 2-days workshop on nurses’ competencies and performances in communication in a central hospital located in the sought of Iran. Materials and Method: This is a randomized controlled trial which comprised of a convenient sample of 70 eligible nurses, working in a central hospital. They were randomly divided into 2 experimental and control groups. Nurses’ competencies was measured by an Objective Structured Clinical Examination (OSCE) and their performance was measured by asking eligible patients hospitalized in the nurses work setting during a one month period to evaluate nurses' communication skills before and 2 months after intervention. The experimental group participated in a 2 day workshop on communication skills. Content included in this workshop were: the importance of communication (verbal and non verbal), basic communication skills such as initiating the communication, active listening and questioning technique. Other subjects were patient teaching, problem solving, and decision making, cross cultural communication and breaking bad news. Appropriate teaching strategies such as brief didactic sessions, small group discussion and reflection were applied to enhance participants learning. The data was analyzed using SPSS 16. Result: A significant between group differences was found in nurses’ communication skills competencies and performances in the posttest. The mean scores of the experimental group was higher than that of the control group in the total score of OSCE as well as all stations of OSCE (p<0.003). Overall posttest mean scores of patient satisfaction with nurse's communication skills and all of its four dimensions significantly differed between the two groups of the study (p<0.001). Conclusion: This study shows that the education of nurses in communication skills, improves their competencies and performances. Measurement of Nurses’ communication skills as a central component of efficient nurse patient relationship by valid and reliable methods of evaluation is recommended. Also it is necessary to integrate teaching of communication skills in continuing nursing education programs. Trial Registration Number: IRCT201204042621N11Keywords: communication skills, simulation, performance, competency, objective structure, clinical evaluation
Procedia PDF Downloads 218698 Sustainability from Ecocity to Ecocampus: An Exploratory Study on Spanish Universities' Water Management
Authors: Leyla A. Sandoval Hamón, Fernando Casani
Abstract:
Sustainability has been integrated into the cities’ agenda due to the impact that they generate. The dimensions of greater proliferation of sustainability, which are taken as a reference, are economic, social and environmental. Thus, the decisions of management of the sustainable cities search a balance between these dimensions in order to provide environment-friendly alternatives. In this context, urban models (where water consumption, energy consumption, waste production, among others) that have emerged in harmony with the environment, are known as Ecocity. A similar model, but on a smaller scale, is ‘Ecocampus’ that is developed in universities (considered ‘small cities’ due to its complex structure). So, sustainable practices are being implemented in the management of university campus activities, following different relevant lines of work. The universities have a strategic role in society, and their activities can strengthen policies, strategies, and measures of sustainability, both internal and external to the organization. Because of their mission in knowledge creation and transfer, these institutions can promote and disseminate more advanced activities in sustainability. This model replica also implies challenges in the sustainable management of water, energy, waste, transportation, among others, inside the campus. The challenge that this paper focuses on is the water management, taking into account that the universities consume big amounts of this resource. The purpose of this paper is to analyze the sustainability experience, with emphasis on water management, of two different campuses belonging to two different Spanish universities - one urban campus in a historic city and the other a suburban campus in the outskirts of a large city. Both universities are in the top hundred of international rankings of sustainable universities. The methodology adopts a qualitative method based on the technique of in-depth interviews and focus-group discussions with administrative and academic staff of the ‘Ecocampus’ offices, the organizational units for sustainability management, from the two Spanish universities. The hypotheses indicate that sustainable policies in terms of water management are best in campuses without big green spaces and where the buildings are built or rebuilt with modern style. The sustainability efforts of the university are independent of the kind of (urban – suburban) campus but an important aspect to improve is the degree of awareness of the university community about water scarcity. In general, the paper suggests that higher institutions adapt their sustainability policies depending on the location and features of the campus and their engagement with the water conservation. Many Spanish universities have proposed policies, good practices, and measures of sustainability. In fact, some offices or centers of Ecocampus have been founded. The originality of this study is to learn from the different experiences of sustainability policies of universities.Keywords: ecocampus, ecocity, sustainability, water management
Procedia PDF Downloads 221697 Circular Economy Maturity Models: A Systematic Literature Review
Authors: Dennis Kreutzer, Sarah Müller-Abdelrazeq, Ingrid Isenhardt
Abstract:
Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation, because this change affects not only production but also the entire company. Maturity models offer an approach, as they enable companies to determine the current status of their transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g. IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyse the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. Since the terms "maturity model" and "readiness model" are often used to assess the transformation process, this paper considers both types of models to provide a more comprehensive result. For this purpose, circular economy maturity models at the company (micro) level were identified from the literature, compared, and analysed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the holism of their assessment framework. Only a few models include the entire company with supporting areas outside the value-creating core process, e.g. strategy and vision. Additionally, there are large differences in the number and type of indicators as well as their metrics. For example, most models often use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.Keywords: maturity model, circular economy, transformation, metric, assessment
Procedia PDF Downloads 114696 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana
Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor
Abstract:
Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution
Procedia PDF Downloads 300695 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance
Authors: Sanjay Shukla
Abstract:
Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus
Procedia PDF Downloads 118694 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano
Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das
Abstract:
Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption
Procedia PDF Downloads 415693 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 137692 Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya
Authors: Sadeg M. Ghnia, Mahmud Alghattawi
Abstract:
The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways.Keywords: hydrocarbon potential, stratigraphy, Ghadamis basin, seismic, well data integration
Procedia PDF Downloads 74691 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches
Authors: Guerich Mohamed, Assaf Samir
Abstract:
The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam
Procedia PDF Downloads 147690 The Features of the Synergistic Approach in Marketing Management to Regional Level
Authors: Evgeni Baratashvili, Anzor Abralava, Rusudan Kutateladze, Nino Pailodze, Irma Makharashvili, Larisa Takalandze
Abstract:
Sinergy as a neological term is reflected in modern sciences. It can be found in the various fields of science including the humanities and technical sciences. Among them are biology and medicine, philology, economy and etc. Synergy is the received surplus of marginal high total effect of the groups, consolidated by one common idea, received through endeavored applies of their combined tools, via obtained effect of the separate independent actions of the groups. In the conditions of market economy, according the terms of new communication terminology, synergy effects on management and marketing successfully as well as on purity defense of native language. The well-known scientist’s and public figure’s Academician I. Prangishvili’s works are especially valuable in this aspect. In our opinion the entropy research is linked to his name in our country. In modern economy, the current qualitative changes shows us that the most number of factors and issues have been regrouped. They have a great influence and even define the economic development. The declining abilities of traditional recourses of economic growth have been related on the use of their physical abilities and their moving closer to the edge. Also it is related on the reduced effectiveness, which at the same time increases the expenditures. This means that the leading must be the innovative process system of products and services in the economic growth model. In our opinion the above mentioned system is distinguished with the synergistic approach. It should be noted that the main components of the innovative system are technological, scientific and scientific-technical, social-organizational, managerial and cognitive changes. All of them are reflected on scientific works and inventions in the proper dosages, in know-how and material source. At any stage they create the reproduction cycle. The innovations are different from each other by technologies, origination, design, innovation and quality, subject-content structure, by the the spread of economic processes and the impact of the level of it’s distribution. We have presented a generalized statement of an innovative approach, which is not a single act of innovation but it is also targeted system of the development, implementation, reconciling-exploitation, production, diffusion and commercialization of news. The innovative approaches should be considered as the creation of news, in-depth process of creativity as an innovative alternative to the realization of innovative and entrepreneurial efforts and measures, in order to meet the requirements of the permanent process.Keywords: economic development, leading process, neological term, synergy
Procedia PDF Downloads 200