Search results for: hybrid thermal and electric generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8967

Search results for: hybrid thermal and electric generation

147 Menstruating Bodies and Social Control – Insights From Dignity Without Danger: Collaboratively Analysing Menstrual Stigma and Taboos in Nepal

Authors: Sara Parker, Kay Standing

Abstract:

This paper will share insights into how menstruators bodies in Nepal are viewed and controlled in Nepal due to the deeply held stigmas and taboos that exist that frame menstrual blood as impure and polluting. It draws on a British Academy Global Challenges Research (BA/GCRF) funded project, ‘Dignity Without Danger,’ that ran from December 2019 to 2022. In Nepal, beliefs and myths around menstrual related practices prevail and vary in accordance to time, generation, caste and class. Physical seclusion and/or restrictions include the consumption of certain foods, the ability to touch certain people and objects, and restricted access to water sources. These restrictions not only put women at risk of poor health outcomes, but they also promote discrimination and challenge fundamental human rights. Despite the pandemic, a wealth of field research and creative outputs have been generated to help break the silence that surrounds menstruation and also highlights the complexity of addressing the harms associated with the exclusion from sacred and profane spaces that menstruators face. Working with locally recruited female research assistants, NGOS and brining together academics from the UK and Nepal, we explore the intersecting factors that impact on menstrual experiences and how they vary throughout Nepal. WE concur with Tamang that there is no such thing as a ‘Nepali Woman’, and there is no one narrative that captures the experiences of menstruators in Nepal. These deeply held beliefs and practices mean that menstruators are denied their right to a dignified menstruation. By being excluded from public and private spaces, such as temples and religious sites, as well as from kitchens and your own bedroom in your own home, these beliefs impact on individuals in complex and interesting ways. Existing research in Nepal by academics and activists demonstrates current programmes and initiatives do not fully address the misconceptions that underpin the exclusionary practices impacting on sexual and reproductive health, a sense of well being and highlight more work is needed in this area. Research has been conducted in all 7 provinces and through exploring and connecting disparate stories, artefacts and narratives, we will deepen understanding of the complexity of menstrual practices enabling local stakeholders to challenge exclusionary practices. By using creative methods to engage with stakeholders and share our research findings as well as highlighting the wealth of activism in Nepal. We highlight the importance of working with local communities, leaders and cutting across disciplines and agencies to promote menstrual justice and dignity. Our research findings and creative outputs that we share on social media channels such as Dignity Without Danger Facebook, Instagram and you tube stress the value of employing a collaborative action research approach to generate material which helps local people take control of their own narrative and change social relations that lead to harmful practices.

Keywords: menstruation, Nepal, stigma, social norms

Procedia PDF Downloads 54
146 Increased Stability of Rubber-Modified Asphalt Mixtures to Swelling, Expansion and Rebound Effect during Post-Compaction

Authors: Fernando Martinez Soto, Gaetano Di Mino

Abstract:

The application of rubber into bituminous mixtures requires attention and care during mixing and compaction. Rubber modifies the properties because it reacts in the internal structure of bitumen at high temperatures changing the performance of the mixture (interaction process of solvents with binder-rubber aggregate). The main change is the increasing of the viscosity and elasticity of the binder due to the larger sizes of the rubber particles by dry process but, this positive effect is counteracted by short mixing times, compared to wet technology, and due to the transport processes, curing time and post-compaction of the mixtures. Therefore, negative effects as swelling of rubber particles, rebounding effect of the specimens and thermal changes by different expansion of the structure inside the mixtures, can change the mechanical properties of the rubberized blends. Based on the dry technology, different asphalt-rubber binders using devulcanized or natural rubber (truck and bus tread rubber), have served to demonstrate these effects and how to solve them into two dense-gap graded rubber modified asphalt concrete mixes (RUMAC) to enhance the stability, workability and durability of the compacted samples by Superpave gyratory compactor method. This paper specifies the procedures developed in the Department of Civil Engineering of the University of Palermo during September 2016 to March 2017, for characterizing the post-compaction and mix-stability of the one conventional mixture (hot mix asphalt without rubber) and two gap-graded rubberized asphalt mixes according granulometry for rail sub-ballast layers with nominal size of Ø22.4mm of aggregates according European standard. Thus, the main purpose of this laboratory research is the application of ambient ground rubber from scrap tires processed at conventional temperature (20ºC) inside hot bituminous mixtures (160-220ºC) as a substitute for 1.5%, 2% and 3% by weight of the total aggregates (3.2%, 4.2% and, 6.2% respectively by volumetric part of the limestone aggregates of bulk density equal to 2.81g/cm³) considered, not as a part of the asphalt binder. The reference bituminous mixture was designed with 4% of binder and ± 3% of air voids, manufactured for a conventional bitumen B50/70 at 160ºC-145ºC mix-compaction temperatures to guarantee the workability of the mixes. The proportions of rubber proposed are #60-40% for mixtures with 1.5 to 2% of rubber and, #20-80% for mixture with 3% of rubber (as example, a 60% of Ø0.4-2mm and 40% of Ø2-4mm). The temperature of the asphalt cement is between 160-180 ºC for mixing and 145-160 ºC for compaction, according to the optimal values for viscosity using Brookfield viscometer and 'ring and ball' - penetration tests. These crumb rubber particles act as a rubber-aggregate into the mixture, varying sizes between 0.4mm to 2mm in a first fraction, and 2-4mm as second proportion. Ambient ground rubber with a specific gravity of 1.154g/cm³ is used. The rubber is free of loose fabric, wire, and other contaminants. It was found optimal results in real beams and cylindrical specimens with each HMA mixture reducing the swelling effect. Different factors as temperature, particle sizes of rubber, number of cycles and pressures of compaction that affect the interaction process are explained.

Keywords: crumb-rubber, gyratory compactor, rebounding effect, superpave mix-design, swelling, sub-ballast railway

Procedia PDF Downloads 233
145 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z

Authors: M. Bredice, M. B. Forleo, L. Quici

Abstract:

Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.

Keywords: cluster analysis, education, knowledge, young people

Procedia PDF Downloads 67
144 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 196
143 Construction and Cross-Linking of Polyelectrolyte Multilayers Based on Polysaccharides as Antifouling Coatings

Authors: Wenfa Yu, Thuva Gnanasampanthan, John Finlay, Jessica Clarke, Charlotte Anderson, Tony Clare, Axel Rosenhahn

Abstract:

Marine biofouling is a worldwide problem at vast economic and ecological costs. Historically it was combated with toxic coatings such as tributyltin. As those coatings being banned nowadays, finding environmental friendly antifouling solution has become an urgent topic. In this study antifouling coatings consisted of natural occurring polysaccharides hyaluronic acid (HA), alginic acid (AA), chitosan (Ch) and polyelectrolyte polyethylenimine (PEI) are constructed into polyelectrolyte multilayers (PEMs) in a Layer-by-Layer (LbL) method. LbL PEM construction is a straightforward way to assemble biomacromolecular coatings on surfaces. Advantages about PEM include ease of handling, highly diverse PEM composition, precise control over the thickness and so on. PEMs have been widely employed in medical application and there are numerous studies regarding their protein adsorption, elasticity and cell adhesive properties. With the adjustment of coating composition, termination layer charge, coating morphology and cross-linking method, it is possible to prepare low marine biofouling coatings with PEMs. In this study, using spin coating technology, PEM construction was achieved at smooth multilayers with roughness as low as 2nm rms and highly reproducible thickness around 50nm. To obtain stability in sea water, the multilayers were covalently cross-linked either thermally or chemically. The cross-linking method affected surface energy, which was reflected in water contact angle, thermal cross-linking led to hydrophobic surfaces and chemical cross-linking generated hydrophilic surfaces. The coatings were then evaluated regarding its protein resistance and biological species resistance. While the hydrophobic thermally cross-linked PEM had low resistance towards proteins, the resistance of chemically cross-linked PEM strongly depended on the PEM termination layer and the charge of the protein, opposite charge caused high adsorption and same charge low adsorption, indicating electrostatic interaction plays a crucial role in the protein adsorption processes. Ulva linza was chosen as the biological species for antifouling performance evaluation. Despite of the poor resistance towards protein adsorption, thermally cross-linked PEM showed good resistance against Ulva spores settlement, the chemically cross-linked multilayers showed poor resistance regardless of the termination layer. Marine species adhesion is a complex process, although it involves proteins as bioadhesives, protein resistance its own is not a fully indicator for its antifouling performance. The species will pre select the surface, responding to cues like surface energy, chemistry, or charge and so on. Thus making it difficult for one single factors to determine its antifouling performance. Preparing PEM coating is a comprehensive work involving choosing polyelectrolyte combination, determining termination layer and the method for cross-linking. These decisions will affect PEM properties such as surface energy, charge, which is crucial, since biofouling is a process responding to surface properties in a highly sensitive and dynamic way.

Keywords: hyaluronic acid, polyelectrolyte multilayers, protein resistance, Ulva linza zoospores

Procedia PDF Downloads 152
142 Correlation of Hyperlipidemia with Platelet Parameters in Blood Donors

Authors: S. Nishat Fatima Rizvi, Tulika Chandra, Abbas Ali Mahdi, Devisha Agarwal

Abstract:

Introduction: Blood components are an unexplored area prone to numerous discoveries which influence patient’s care. Experiments at different levels will further change the present concept of blood banking. Hyperlipidemia is a condition of elevated plasma level of low-density lipoprotein (LDL) as well as decreased plasma level of high-density lipoprotein (HDL). Studies show that platelets play a vital role in the progression of atherosclerosis and thrombosis, a major cause of death worldwide. They are activated by many triggers like elevated LDL in the blood resulting in aggregation and formation of plaques. Hyperlipidemic platelets are frequently transfused to patients with various disorders. Screening the random donor platelets for hyperlipidemia and correlating the condition with other donor criteria such as lipid rich diet, oral contraceptive pills intake, weight, alcohol intake, smoking, sedentary lifestyle, family history of heart diseases will lead to further deciding the exclusion criteria for donor selection. This will help in making the patients safe as well as the donor deferral criteria more stringent to improve the quality of blood supply. Technical evaluation and assessment will enable blood bankers to supply safe blood and improve the guidelines for blood safety. Thus, we try to study the correlation between hyperlipidemic platelets with platelets parameters, weight, and specific history of the donors. Methodology: This case control study included 100 blood samples of Blood donors, out of 100 only 30 samples were found to be hyperlipidemic and were included as cases, while rest were taken as controls. Lipid Profile were measured by fully automated analyzer (TRIGL:triglycerides),(LDL-C:LDL –Cholesterol plus 2nd generation),CHOL 2: Cholesterol Gen 2), HDL C 3: HDL-Cholesterol plus 3rdgeneration)-(Cobas C311-Roche Diagnostic).And Platelets parameters were analyzed by the Sysmex KX21 automated hematology analyzer. Results: A significant correlation was found amongst hyperlipidemic level in single time donor. In which 80% donors have history of heart disease, 66.66% donors have sedentary life style, 83.3% donors were smokers, 50% donors were alcoholic, and 63.33% donors had taken lipid rich diet. Active physical activity was found amongst 40% donors. We divided donors sample in two groups based on their body weight. In group 1, hyperlipidemic samples: Platelet Parameters were 75% in normal 25% abnormal in >70Kg weight while in 50-70Kg weight 90% were normal 10% were abnormal. In-group 2, Non Hyperlipidemic samples: platelet Parameters were 95% normal and 5% abnormal in >70Kg weight, while in 50-70Kg Weight, 66.66% normal and 33.33% abnormal. Conclusion: The findings indicate that Hyperlipidemic status of donors may affect the platelet parameters and can be distinguished on history by their weight, Smoking, Alcoholic intake, Sedentary lifestyle, Active physical activity, Lipid rich diet, Oral contraceptive pills intake, and Family history of heart disease. However further studies on a large sample size will affirm this finding.

Keywords: blood donors, hyperlipidemia, platelet, weight

Procedia PDF Downloads 299
141 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: automotive industry, FMEA, control plan, automotive technology

Procedia PDF Downloads 397
140 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 66
139 Towards Sustainable Evolution of Bioeconomy: The Role of Technology and Innovation Management

Authors: Ronald Orth, Johanna Haunschild, Sara Tsog

Abstract:

The bioeconomy is an inter- and cross-disciplinary field covering a large number and wide scope of existing and emerging technologies. It has a great potential to contribute to the transformation process of industry landscape and ultimately drive the economy towards sustainability. However, bioeconomy per se is not necessarily sustainable and technology should be seen as an enabler rather than panacea to all our ecological, social and economic issues. Therefore, to draw and maximize benefits from bioeconomy in terms of sustainability, we propose that innovative activities should encompass not only novel technologies and bio-based new materials but also multifocal innovations. For multifocal innovation endeavors, innovation management plays a substantial role, as any innovation emerges in a complex iterative process where communication and knowledge exchange among relevant stake holders has a pivotal role. The knowledge generation and innovation are although at the core of transition towards a more sustainable bio-based economy, to date, there is a significant lack of concepts and models that approach bioeconomy from the innovation management approach. The aim of this paper is therefore two-fold. First, it inspects the role of transformative approach in the adaptation of bioeconomy that contributes to the environmental, ecological, social and economic sustainability. Second, it elaborates the importance of technology and innovation management as a tool for smooth, prompt and effective transition of firms to the bioeconomy. We conduct a qualitative literature study on the sustainability challenges that bioeconomy entails thus far using Science Citation Index and based on grey literature, as major economies e.g. EU, USA, China and Brazil have pledged to adopt bioeconomy and have released extensive publications on the topic. We will draw an example on the forest based business sector that is transforming towards the new green economy more rapidly as expected, although this sector has a long-established conventional business culture with consolidated and fully fledged industry. Based on our analysis we found that a successful transition to sustainable bioeconomy is conditioned on heterogenous and contested factors in terms of stakeholders , activities and modes of innovation. In addition, multifocal innovations occur when actors from interdisciplinary fields engage in intensive and continuous interaction where the focus of innovation is allocated to a field of mutually evolving socio-technical practices that correspond to the aims of the novel paradigm of transformative innovation policy. By adopting an integrated and systems approach as well as tapping into various innovation networks and joining global innovation clusters, firms have better chance of creating an entire new chain of value added products and services. This requires professionals that have certain capabilities and skills such as: foresight for future markets, ability to deal with complex issues, ability to guide responsible R&D, ability of strategic decision making, manage in-depth innovation systems analysis including value chain analysis. Policy makers, on the other hand, need to acknowledge the essential role of firms in the transformative innovation policy paradigm.

Keywords: bioeconomy, innovation and technology management, multifocal innovation, sustainability, transformative innovation policy

Procedia PDF Downloads 116
138 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 72
137 Effects on Inflammatory Biomarkers and Respiratory Mechanics in Laparoscopic Bariatric Surgery: Desflurane vs. Total Intravenous Anaesthesia with Propofol

Authors: L. Kashyap, S. Jha, D. Shende, V. K. Mohan, P. Khanna, A. Aravindan, S. Kashyap, L. Singh, S. Aggarwal

Abstract:

Obesity is associated with a chronic inflammatory state. During surgery, there is an interplay between anaesthetic and surgical stress vis-a-vis the already present complex immune state. Moreover, the postoperative period is dictated by inflammation, which is crucial for wound healing and regeneration. An excess of inflammatory response might hamper recovery besides increasing the risk for infection and complications. There is definite evidence of the immunosuppressive role of inhaled anaesthetic agents. This immune modulation may be brought into effect directly by influencing the innate and adaptive immunity cells. The effects of propofol on immune mechanisms in has been widely elucidated because of its popularity. It reduces superoxide generation, elastase release, and chemotaxis. However, there is no unequivocal proof of one’s superiority over the other. Hence, an anaesthetic regimen with lesser inflammatory potential and specific to the obese patient is needed. OBESITA trial protocol (2019) by Sousa and co-workers in progress aims to test the hypothesis that anaesthesia with sevoflurane results in a weaker proinflammatory response compared to propofol, as evidenced by lower IL-6 and other biomarkers and an increased macrophage differentiation into M2 phenotype in adipose tissue. IL-6 was used as the objective parameter to evaluate inflammation as it is regulated by both surgery and anesthesia. It is the most sensitive marker of the inflammatory response to tissue damage since it is released within minutes by blood leukocytes. We hypothesized that maintenance of anaesthesia with propofol would lead to less inflammation than that with desflurane. Aims: The effect of two anaesthetic techniques, total intravenous anaesthesia (TIVA) with propofol and desflurane, on surgical stress response was evaluated. The primary objective was to compare serum interleukin-6 (IL-6) levels before and after surgery. Methods: In this prospective single-blinded randomized controlled trial undertaken, 30 obese patients (BMI>30 kg/m2) undergoing laparoscopic bariatric surgery under general anaesthesia were recruited. Patients were randomized to receive desflurane or TIVA using a target-controlled infusion for maintenance of anaesthesia. As a marker of inflammation, pre-and post-surgery IL-6 levels were compared. Results: After surgery, IL-6 levels increased significantly in both groups. The rise in IL-6 was less with TIVA than with desflurane; however, it did not reach significance. IL-6 rise post-surgery correlated positively with the complexity of procedure and duration of surgery and anaesthesia, rather than anaesthetic technique. Both groups did not differ in terms of intra-operative hemodynamic and respiratory variables, time to awakening, postoperative pulmonary complications, and duration of hospital stay. The incidence of nausea was significantly higher with desflurane than with TIVA. Conclusion: Inflammatory response did not differ as a function of anaesthetic technique when propofol and desflurane were compared. Also, patient and surgical variables dictated post-operative inflammation more than the anaesthetic factors. Further, larger sample size is needed to confirm or refute these findings.

Keywords: bariatric, biomarkers, inflammation, laparoscopy

Procedia PDF Downloads 111
136 Migration as a Trigger Causing Change to the Levant Literary Modernism

Authors: Aathira Peedikaparambil Somasundaran

Abstract:

The beginning of the 20th century marked the perios when a new generation of Lebanese radicals sowed the seeds for the second phase of Levant literary modernism, situated in the Levant. Beirut, during this era popularly fit every radical writer’s criterion owing to its weakened censorship and political control, despite the absence of a protective womb for the development of literary modernism, caused by the natively prevalent political unsettlement. The third stage of literary modernization, in which scholars used Western-inspired critical techniques to better understand their own cultures, coincides with the time period examined in this paper, which involved the international-inspired critical analysis of native cultural stimulants, which raised questions among Arab freethinking intellectuals. Locals who ventured outside recognised the difference between the West's progress and their own nations' stagnation. The awareness of such ‘gap of success’ aroused an ambition from journalists, authors, and proletarian revolutionaries who had studied in Europe, and finally developed enlightened ideas. Some Middle Eastern authors and artists only adopted current social and political frameworks after discovering western modernity. After learning about the upheavals that were happening in the West, these thinkers aspired to bring about equally broad drastic developments in their own country's social, political, and cultural milieu. These occurrences illustrate the increased power of migration to alter the cultural and literary scene in the Levant. The paper intends to discuss the different effects of migration that contributed to Levant literary modernism. The exploration of these factors as causes begins with addressing the politically influenced activism, that has always been a relevant part of Beirut, and then diving into the psychological effects of migration in the individuals of the society, which might have induced an accommodability to alien thoughts and ideas over time, as a coping mechanism. Nature or environmental stimuli, a common trigger for any creative output, often having the highest influence during travel will be identified and analysed to inspect the extent of its impact on the exchange of ideas that resulted in Levant modernism. The efficiency of both the stimulating component of travel and the diaspora of the indigenous, a by-product of travel in catalysing modernism in the Levant has to be proven in order to understand how migration indirectly affected the transmission and adoption of ideas in Levant literature. The paper will revisit the events revolving around these key players and platforms like Shir, to understand how the Lebanese literature, tied down in poetry drastically mutated under the leadership of Adonis, Yusuf et Khal, and other pioneers of Levant literary modernism. The conclision will identify the triggers that helped authors overcome personal and geographical barriers to unite the West and the Levant, and investigate the extent to which the bi-directional migration prompted a transformation in the local poetry. Consequently, the paper aims to shed light into the unique factor that provoked the shift in the literary scene of Twentieth century in the Middle East.

Keywords: literature, modernism, Middle East, levant, Beirut

Procedia PDF Downloads 69
135 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 49
134 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 336
133 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling

Procedia PDF Downloads 121
132 Cultural Intelligence for the Managers of Tomorrow: A Data-Based Analysis of the Antecedents and Training Needs of Today’s Business School Students

Authors: Justin Byrne, Jose Ramon Cobo

Abstract:

The growing importance of cross- or intercultural competencies (used here interchangeably) for the business and management professionals is now a commonplace in both academic and professional literature. This reflects two parallel developments. On the one hand, it is a consequence of the increased attention paid to a whole range of 'soft skills', now seen as fundamental in both individuals' and corporate success. On the other hand, and more specifically, the increasing demand for interculturally competent professionals is a corollary of ongoing processes of globalization, which multiply and intensify encounters between individuals and companies from different cultural backgrounds. Business schools have, for some decades, responded to the needs of the job market and their own students by providing students with training in intercultural skills, as they are encouraged to do so by the major accreditation agencies on both sides of the Atlantic. Adapting Early and Ang's (2003) formulation of Cultural Intelligence (CQ), this paper aims to help fill the lagunae in the current literature on intercultural training in three main ways. First, it offers an in-depth analysis of the CQ of a little studied group: contemporary Millenial and 'Generation Z' Business School students. The level of analysis distinguishes between the four different dimensions of CQ, cognition, metacognition, motivation and behaviour, and thereby provides a detailed picture of the strengths and weaknesses in CQ of the group as a whole, as well as of different sub-groups and profiles of students. Secondly, by crossing these individual-level findings with respondents' socio-cultural and educational data, this paper also proposes and tests hypotheses regarding the relative impact and importance of four possible antecedents of intercultural skills identified in the literature: prior international experience; intercultural training, foreign language proficiency, and experience of cultural diversity in habitual country of residence. Third, we use this analysis to suggest data-based intercultural training priorities for today's management students. These conclusions are based on the statistical analysis of individual responses of some 300 Bachelor or Masters students in a major European Business School provided to two on-line surveys: Ang, Van Dyne, et al's (2007) standard 20-question self-reporting CQ Scale, and an original questionnaire designed by the authors to collate information on respondent's socio-demographic and educational profile relevant to our four hypotheses and explanatory variables. The data from both instruments was crossed in both descriptive statistical analysis and regression analysis. This research shows that there is no statistically significant and positive relationship between the four antecedents analyzed and overall CQ level. The exception in this respect is the statistically significant correlation between international experience, and the cognitive dimension of CQ. In contrast, the results show that the combination of international experience and foreign language skills acting together, does have a strong overall impact on CQ levels. These results suggest that selecting and/or training students with strong foreign language skills and providing them with international experience (through multinational programmes, academic exchanges or international internships) constitutes one effective way of training culturally intelligent managers of tomorrow.

Keywords: business school, cultural intelligence, millennial, training

Procedia PDF Downloads 150
131 The 10,000 Fold Effect of Retrograde Neurotransmission, a New Concept for Stroke Revival: Use of Intracarotid Sodium Nitroprusside

Authors: Vinod Kumar

Abstract:

Background: Tissue Plasminogen Activator (tPA) showed a level 1 benefit in acute stroke (within 3-6 hrs). Intracarotid sodium nitroprusside (ICSNP) has been studied in this context with a wide treatment window, fast recovery and affordability. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a)Retrograde Neurotransmission (acute cases): 1)Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2)Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b)Vasospasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c)Long-Term Potentıatıon (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Des’gn: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat stroke cases. Case-control prospective study. Mater’als And Methods: The experimental population included 82 stroke patients (10 patients were given control treatments without superfusion or with 5% dextrose superfusion, and 72 patients comprised the ICSNP group). The mean time for superfusion was 9.5 days post-stroke. Pre- and post-ICSNP status was monitored by NIHSS, MRI and TCD. Results: After 90 seconds in the ICSNP group, the mean change in the NIHSS score was a decrease of 1.44 points, or 6.55%; after 2 h, there was a decrease of 1.16 points; after 24 h, there was an increase of 0.66 points, 2.25%, compared to the control-group increase of 0.7 points, or 3.53%; at 7 days, there was an 8.61-point decrease, 44.58%, compared to the control-group increase of 2.55 points, or 22.37%; at 2 months in ICSNP, there was a 6.94-points decrease, 62.80%, compared to the control-group decrease of 2.77 points, or 8.78%. TCD was documented and improvements were noted. Conclusions: ICSNP is a swift-acting drug in the treatment of stroke, acting within 90 seconds on day 9.5 post-stroke with a small decrease after 24 hours. The drug recovers from this decrease quickly.

Keywords: brain infarcts, intracarotid sodium nitroprusside, perforators, vasodilatıons, retrograde transmission, the 10, 000-fold effect

Procedia PDF Downloads 299
130 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 102
129 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province

Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab

Abstract:

Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.

Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province

Procedia PDF Downloads 60
128 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 97
127 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China

Authors: Bai-Chen Xie, Xian-Peng Chen

Abstract:

China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.

Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation

Procedia PDF Downloads 76
126 The 10,000 Fold Effect of Retrograde Neurotransmission: A New Concept for Cerebral Palsy Revival by the Use of Nitric Oxide Donars

Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta

Abstract:

Background: Nitric Oxide Donars (NODs) (intrathecal sodium nitroprusside (ITSNP) and oral tadalafil 20mg post ITSNP) has been studied in this context in cerebral palsy patients for fast recovery. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a) Retrograde Neurotransmission (acute cases): 1) Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2) Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b) Vasopasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c) Long-Term Potentiation (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Design: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat cerebral palsy cases. Case-control prospective study. Materials and Methods: The experimental population included 82 cerebral palsy patients (10 patients were given control treatments without NOD or with 5% dextrose superfusion, and 72 patients comprised the NOD group). The mean time for superfusion was 5 months post-cerebral palsy. Pre- and post-NOD status was monitored by Gross Motor Function Classification System for Cerebral Palsy (GMFCS), MRI, and TCD studies. Results: After 7 days in the NOD group, the mean change in the GMFCS score was an increase of 1.2 points mean; after 3 months, there was an increase of 3.4 points mean, compared to the control-group increase of 0.1 points at 3 months. MRI and TCD documented the improvements. Conclusions: NOD (ITSNP boosts up the recovery and oral tadalafil maintains the recovery to a well-desired level) acts swiftly in the treatment of CP, acting within 7 days on 5 months post-cerebral palsy either of the three mechanisms.

Keywords: cerebral palsy, intrathecal sodium nitroprusside, oral tadalafil, perforators, vasodilations, retrograde transmission, the 10, 000-fold effect, long-term potantiation

Procedia PDF Downloads 353
125 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 42
124 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 77
123 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel

Authors: Bill Wason

Abstract:

143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050

Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF

Procedia PDF Downloads 87
122 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 106
121 The Impact of China’s Waste Import Ban on the Waste Mining Economy in East Asia

Authors: Michael Picard

Abstract:

This proposal offers to shed light on the changing legal geography of the global waste economy. Global waste recycling has become a multi-billion-dollar industry. NASDAQ predicts the emergence of a worldwide 1,296G$ waste management market between 2017 and 2022. Underlining this evolution, a new generation of preferential waste-trade agreements has emerged in the Pacific. In the last decade, Japan has concluded a series of bilateral treaties with Asian countries, and most recently with China. An agreement between Tokyo and Beijing was formalized on 7 May 2008, which forged an economic partnership on waste transfer and mining. The agreement set up International Recycling Zones, where certified recycling plants in China process industrial waste imported from Japan. Under the joint venture, Chinese companies salvage the embedded value from Japanese industrial discards, reprocess them and send them back to Japanese manufacturers, such as Mitsubishi and Panasonic. This circular economy is designed to convert surplus garbage into surplus value. Ever since the opening of Sino-Japanese eco-parks, millions of tons of plastic and e-waste have been exported from Japan to China every year. Yet, quite unexpectedly, China has recently closed its waste market to imports, jeopardizing Japan’s billion-dollar exports to China. China notified the WTO that, by the end of 2017, it would no longer accept imports of plastics and certain metals. Given China’s share of Japanese waste exports, a complete closure of China’s market would require Japan to find new uses for its recyclable industrial trash generated domestically every year. It remains to be seen how China will effectively implement its ban on waste imports, considering the economic interests at stake. At this stage, what remains to be clarified is whether China's ban on waste imports will negatively affect the recycling trade between Japan and China. What is clear, though, is the rapid transformation in the legal geography of waste mining in East-Asia. For decades, East-Asian waste trade had been tied up in an ‘ecologically unequal exchange’ between the Japanese core and the Chinese periphery. This global unequal waste distribution could be measured by the Environmental Stringency Index, which revealed that waste regulation was 39% weaker in the Global South than in Japan. This explains why Japan could legally export its hazardous plastic and electronic discards to China. The asymmetric flow of hazardous waste between Japan and China carried the colonial heritage of international law. The legal geography of waste distribution was closely associated to the imperial construction of an ecological trade imbalance between the Japanese source and the Chinese sink. Thus, China’s recent decision to ban hazardous waste imports is a sign of a broader ecological shift. As a global economic superpower, China announced to the world it would no longer be the planet’s junkyard. The policy change will have profound consequences on the global circulation of waste, re-routing global waste towards countries south of China, such as Vietnam and Malaysia. By the time the Berlin Conference takes place in May 2018, the presentation will be able to assess more accurately the effect of the Chinese ban on the transboundary movement of waste in Asia.

Keywords: Asia, ecological unequal exchange, global waste trade, legal geography

Procedia PDF Downloads 201
120 Providing Leadership in Nigerian University Education Research Enterprise: The Imperative of Research Ethics

Authors: O. O. Oku, K. S. Jerry-Alagbaoso

Abstract:

It is universally acknowledged that the primary function of universities is the generation and dissemination of knowledge. This mission is pursued through the research component of the university programme especially at the post-graduate level. The senior academic staff teach, supervise and provide general academic leadership to post-graduate students who are expected to carry out research leading to the presentation of dissertation as requirement for the award of doctoral degree in their various disciplines. Carrying out the research enterprises involves a lot of corroboration among individuals and communities. The need to safeguard the interest of everyone involved in the enterprise makes the development of ethical standard in research imperative. Ensuring the development and effective application of such ethical standard falls within the leadership role of the vice –chancellors, Deans of post-graduate schools/ faculties, Heads of Departments and supervisors. It is the relevance and application of such ethical standard in Nigerian university research efforts that this study discussed. The study adopted the descriptive research design. A researcher-made 4 point rating scale was used to elicit information from the post-graduate dissertation supervisors sampled from one university each from the six geo-political zones in Nigeria using the purposive sampling technique. The data collected was analysed using the mean score and standard deviation. The findings of the study include among others that there are several cases of unethical practices by Ph.D dissertation students in Nigerian universities. Prominent among these include duplicating research topics, making unauthorized copies of data paper or computer programme, failing to acknowledge contributions of relevant people and authors, rigging an experiment to prempt the result among others. Some of the causes of the unethical practices according to the respondents include inadequate funding of universities resulting in inadequate remuneration for university teachers, inadequacy of equipment and infrastructures, poor supervision of Ph.D students,’ poverty on the side of the student researchers and non-application of sanctions on violators. Improved funding of the Nigerian universities system with emphasis on both staff and student research efforts, admitting academic oriented students into the Ph.D programme and ensuring the application of appropriate sanctions in cases of unethical conduct in research featured prominently in the needed leadership imperatives. Based on the findings of the study, the researchers recommend the development of university research policies that is closely tied to each university’s strategic plan. Such plan should explain the research focus that will attract more funding and direct students interest towards it without violating the principle of academic freedom. The plan should also incorporate the establishment of a research administration office to provide the necessary link between the students and funding agencies and also organise training for supervisors on leadership activities expected of them while educating students on the processes involved in carrying out a qualitative and acceptable research study. Such exercise should include the ethical principles and guidelines that comprise all parts of research from research topic through the literature review to the design and the truthful reporting of results.

Keywords: academic leadership, ethical standards, research stakeholders, research enterprise

Procedia PDF Downloads 231
119 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy

Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai

Abstract:

Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.

Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy

Procedia PDF Downloads 129
118 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions

Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra

Abstract:

In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.

Keywords: aerosol, CFD, deposition, coagulation

Procedia PDF Downloads 133