Search results for: green construction material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11343

Search results for: green construction material

2583 Socio-Economic Determinants of House Developments in Nigeria

Authors: Odunjo Oluronke Omolola, Okanlawon Simon Ayorinde

Abstract:

This study examines the relationship between house characteristics and socio-economic characteristics of developers in Ibadan, southwest, Nigeria. The research is borne out of the fact that social housing has not done much as a result of finance and housing poverty is on the increase in the country. Multistage random sampling was used in selecting 2,646 respondents in the area. The questionnaire forms the basic instrument for data collection and was administered to heads of households to collect information on socio-economic and demographic characteristics as well as characteristics of development. Both descriptive and inferential statistical analyses were employed in the presentation of the findings; MANOVA was used to analyse the relationship between house characteristics measured by wall materials (Y1-Yn) and socio-economic characteristics of developers measured by gender (X1), religion (X2), educational background (X3) and employment status (X4).The study found out that the bulk of the respondents (65.7%) were male, while 51.7% practiced Christianity. Also, 35.9% had HND/1st/Postgraduate degree, while 43.9% were self employed; Most households however, had membership size of 5 (26.9%). The significant wall material in the area was sandcrete block (71.2%) as opposed to mud (19.1%) and brick (0.6%). Multiple Analysis of Variance shows that there is a significant relationship between sandcrete block and each of gender (X1) and employment status (X3). The factor adduced to this is accessibility to cooperative societies which serve as the gravitational force of attraction for housing finance. The study suggests among others that, there should be re-invigoration of existing cooperative societies, while more should be established for the provision of housing finance.

Keywords: relationship, house development, developers, sandcrete block, cooperative societies

Procedia PDF Downloads 480
2582 Study of the Tribological Behavior of a Pin on Disc Type of Contact

Authors: S. Djebali, S. Larbi, A. Bilek

Abstract:

The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.

Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate

Procedia PDF Downloads 323
2581 Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.

Authors: Mojgan Rabiey, Shyamali Roy, Billy Quilty, Ryan Creeth, George Sundin, Robert W. Jackson

Abstract:

Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents.

Keywords: bacteriophage, pseudomonas, bacterial cancker, biological control

Procedia PDF Downloads 127
2580 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo

Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi

Abstract:

This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.

Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal

Procedia PDF Downloads 120
2579 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints

Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich

Abstract:

Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.

Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void

Procedia PDF Downloads 99
2578 Efficacy Testing of a Product in Reducing Facial Hyperpigmentation and Photoaging after a 12-Week Use

Authors: Nalini Kaul, Barrie Drewitt, Elsie Kohoot

Abstract:

Hyperpigmentation is the third most common pigmentary disorder where dermatologic treatment is sought. It affects all ages resulting in skin darkening because of melanin accumulation. An uneven skin tone because of either exposure to the sun (solar lentigos/age spots/sun spots or skin disruption following acne, or rashes (post-inflammatory hyperpigmentation -PIH) or hormonal changes (melasma) can lead to significant psychosocial impairment. Dyschromia is a result of various alterations in biochemical processes regulating melanogenesis. Treatments include the daily use of sunscreen with lightening, brightening, and exfoliating products. Depigmentation is achieved by various depigmenting agents: common examples are hydroquinone, arbutin, azelaic acid, aloesin, mulberry, licorice extracts, kojic acid, niacinamide, ellagic acid, arbutin, green tea, turmeric, soy, ascorbic acid, and tranexamic acid. These agents affect pigmentation by interfering with mechanisms before, during, and after melanin synthesis. While immediate correction is much sought after, patience and diligence are key. Our objective was to assess the effects of a facial product with pigmentation treatment and UV protection in 35 healthy F (35-65y), meeting the study criteria. Subjects with mild to moderate hyperpigmentation and fine lines with no use of skin-lightening products in the last six months or any dermatological procedures in the last twelve months before the study started were included. Efficacy parameters included expert clinical grading for hyperpigmentation, radiance, skin tone & smoothness, fine lines, and wrinkles bioinstrumentation (Corneometer®, Colorimeter®), digital photography and imaging (Visia-CR®), and self-assessment questionnaires. Safety included grading for erythema, edema, dryness & peeling and self-assessments for itching, stinging, tingling, and burning. Our results showed statistically significant improvement in clinical grading scores, bioinstrumentation, and digital photos for hyperpigmentation-brown spots, fine lines/wrinkles, skin tone, radiance, pores, skin smoothness, and overall appearance compared to baseline. The product was also well-tolerated and liked by subjects. Conclusion: Facial hyperpigmentation is of great concern, and treatment strategies are increasingly sought. Clinical trials with both subjective and objective assessments, imaging analyses, and self-perception are essential to distinguish evidence-based products. The multifunctional cosmetic product tested in this clinical study showed efficacy, tolerability, and subject satisfaction in reducing hyperpigmentation and global photoaging.

Keywords: hyperpigmentation; photoaging, clinical testing, expert visual evaluations, bio-instruments

Procedia PDF Downloads 51
2577 Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model

Authors: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Jan Jäckel, Andreas Gebauer-Teichmann

Abstract:

This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper.

Keywords: CFD, fluid-structure interaction, high-pressure die casting, multiphase flow

Procedia PDF Downloads 312
2576 Advantages of Utilizing Post-Tensioned Stress Ribbon Systems in Long Span Roofs

Authors: Samih Ahmed, Guayente Minchot, Fritz King, Mikael Hallgren

Abstract:

The stress ribbon system has numerous advantages that include but are not limited to increasing overall stiffness, control deflections, and reduction of materials consumption, which in turn, reduces the load and the cost. Nevertheless, its use is usually limited to bridges, in particular, pedestrian bridges; this can be attributed to the insufficient space that buildings' usually have for end supports, and/or back- stayed cables, that can accommodate the expected high pull-out forces occurring at the cables' ends. In this work, the roof of Västerås Travel Center, which will become one of the longest cable suspended roofs in the world, was chosen as a case study. The aim was to investigate the optimal technique to model the post-tensioned stress ribbon system for the roof structure using the FEM software SAP2000 and to assess any possible reduction in the pull-out forces, deflections, and concrete stresses. Subsequently, a conventional cable suspended roof was simulated using SAP2000, and compared to the post-tension stress ribbon system in order to examine the potential of the latter. Moreover, the effects of temperature loads and support movements on the final design loads were examined. Based on the study, a few practical recommendations concerning the construction method and the iterative design process, required to meet the architectural geometrical demands, are stated by the authors. The results showed that the post-tensioned stress ribbon system reduces the concrete stresses, overall deflections, and more importantly, reduces the pull-out forces and the vertical reactions at both ends by up to 16% and 11%, respectively, which substantially reduces the design forces for the support structures. The magnitude of these reductions was found to be highly correlated to the applied prestressing force, making the size of the prestressing force a key factor in the design.

Keywords: cable suspended, post-tension, roof structure, SAP2000, stress ribbon

Procedia PDF Downloads 141
2575 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 188
2574 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 38
2573 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports

Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca

Abstract:

The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.

Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency

Procedia PDF Downloads 506
2572 Formal Thai National Costume in the Reign of King Bhumibol Adulyadej

Authors: Chanoknart Mayusoh

Abstract:

The research about Formal Thai National Costume in the reign of King Bhumibol Adulyadej is an applied research that aimed to study the accurate knowledge concerning to Thai national costume in the reign of King Rama IX, also to study origin of all costumes in the reign of King Rama IX and to study the style, material used, and using accasion. This research methodology which are collect quanlitative data through observation, document, and photograph from key informant of costume in the reign of King Rama IX and from another who related to this field. The formal Thai national costume of the reign of King Bhumibol Adulyadej originated from the visit of His Majesty the King to Europe and America in 1960. Since Thailand had no traditional national costume; Her Majesty the Queen initiated the idea to create formal Thai national costumes. In 1964, Her Majesty the Queen selected 8 styles of formal Thai national costume. Later, Her Majesty the Queen confered another 3 formal Thai national costume for men. There are 8 styles of formal Thai national costume for women: Thai Ruean Ton, Thai Chit Lada, Thai Amarin, Thai Borom Phiman, Thai Siwalia, Thai Chakkri, Thai Dusit, and Thai Chakkraphat. There are 3 styles of formal Thai national costume for men: short-sleeve shirt, long-sleeve shirt, and long-sleeve shirt with breechcloth. The costume is widely used in formal ceremony such as greeting ceremony for official foreign visitors, wedding ceremony, or other auspicious ceremonies. Now a day, they are always used as a bridal gown as well. The formal Thai national costume is valuable art that shows Thai identity and, should be preserved for the next generation.

Keywords: formal Thai national costume for women, formal Thai national costume for men, His Majesty King Bhumibol Adulyadej the Great King Rama IX, Her Majesty Queen Sirikit Queen

Procedia PDF Downloads 229
2571 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity

Procedia PDF Downloads 412
2570 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 120
2569 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine

Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi

Abstract:

Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).

Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer

Procedia PDF Downloads 398
2568 Compromising of Vacuum Sewerage System in Developing Regions and the Impact on Environmet

Authors: Abdelsalam Elawwad, Mostafa Ragab, Hisham Abdel-Halim

Abstract:

Leakage in sewerage system can cause groundwater and soil contamination in urban areas, especially in area with a high groundwater table. This is a serious problem in small villages in developing countries that rely on ground water as a source for irrigation and drinking purposes. In the developed countries, the recent trend in areas with low population densities is vacuum sewerage system, which is environmentally safer than conventional gravity system, protecting public health, preventing exfiltration to the ground water, very easily applied in a relatively short time and can cope with a faster expansion of the urbanized areas. The aim of this work is to assess the feasibility of using vacuum sewerage in developing country, such as Egypt. Knowledge of local conditions can determine the most suitable sewer system for a specific region. Technical, environmental and financial comparisons between conventional sewerage system and vacuum sewerage system were held using statistical analysis. Different conditions, such as population densities, geometry of area, and ground water depths were evaluated. Sample comprising of 30 Egyptian villages was selected, where a complete design for conventional sewerage system and vacuum sewerage system was done. Based on this study, it is recommended from the environmental point of view to construct the vacuum sewerage system in such villages with low population densities; however, it is not economic for all cases. From financial point of view, vacuum sewerage system was a good competitor to conventional systems in flat areas and areas with high groundwater table. The local market supplying of the construction equipment especially collection chambers will greatly affect the investment cost. Capacity building and social mobilization will also play a great role in sustainability of this system. At the end, it is noteworthy that environmental sustainability and public health are more important than the financial aspects.

Keywords: ground water, conventional system, vacuum system, statistics, cost, density, terrain

Procedia PDF Downloads 257
2567 The Evaluation of Antioxidant Activity of Aloe Vera (Aloe barbadensis miller)

Authors: R. A. Akande, M. L. Mnisi

Abstract:

Introduction: Aloe vera (Aloe barbadensis miller) flowers are carried in a large candelabra-like flower-head. Aloe barbadensis miller has been known as a traditional herbal medicine for the treatment of many diseases and sicknesses mainly for skin conditions such as sunburns, cold sores and frostbite. It is also used as a fresh food preservative. The main objective of this study is to determine the antioxidant activity of Aloe barbadensis miller. Methodology: The plant material (3g) was separately extracted with 30 mL of solvent with varying polarities (methanol and ethyl acetate)(technical grade, Merck) in 50ml polyester centrifuge tubes. The tubes was be shaken for 30 minutes on a linear shaker and left over night. The supernatant was filtered using a Whitman No. 1 filter paper before being transferred into pre-weighed glass containers. The solvent was allowed to evaporate under a fan in a room to quantify extraction efficacy. The, tin layer chromatography(TLC) plates were prepared and Pasteur pipette was used for spotting each extractant (methanol and ethyl acetate) on the TLC plates and the plate was developed in saturated TLC tank .and dipped in vanillin sulphuric acid mixture and heated at 110 to detect separate compound .and dipped in DDPH in methanol to detect antioxidant. Expected contribution to knowledge: It was observed that different compounds which interact differently with different solvent such as methanol, ethyl acetate having difference polarities were observed. The yellow spots also observed from the plate dipped in DDPH indicate that Aloe barbadensis miller has antioxidant.

Keywords: antioxidant activity, Aloe barbadensis miller, tin layer chromatography, DDPH

Procedia PDF Downloads 426
2566 Optimal MRO Process Scheduling with Rotable Inventory to Minimize Total Earliness

Authors: Murat Erkoc, Kadir Ertogral

Abstract:

Maintenance, repair and overhauling (MRO) of high cost equipment used in many industries such as transportation, military and construction are typically subject to regulations set by local governments or international agencies. Aircrafts are prime examples for this kind of equipment. Such equipment must be overhauled at certain intervals for continuing permission of use. As such, the overhaul must be completed by strict deadlines, which often times cannot be exceeded. Due to the fact that the overhaul is typically a long process, MRO companies carry so called rotable inventory for exchange of expensive modules in the overhaul process of the equipment so that the equipment continue its services with minimal interruption. The extracted module is overhauled and returned back to the inventory for future exchange, hence the name rotable inventory. However, since the rotable inventory and overhaul capacity are limited, it may be necessary to carry out some of the exchanges earlier than their deadlines in order to produce a feasible overhaul schedule. An early exchange results with a decrease in the equipment’s cycle time in between overhauls and as such, is not desired by the equipment operators. This study introduces an integer programming model for the optimal overhaul and exchange scheduling. We assume that there is certain number of rotables at hand at the beginning of the planning horizon for a single type module and there are multiple demands with known deadlines for the exchange of the modules. We consider an MRO system with identical parallel processing lines. The model minimizes total earliness by generating optimal overhaul start times for rotables on parallel processing lines and exchange timetables for orders. We develop a fast exact solution algorithm for the model. The algorithm employs full-delay scheduling approach with backward allocation and can easily be used for overhaul scheduling problems in various MRO settings with modular rotable items. The proposed procedure is demonstrated by a case study from the aerospace industry.

Keywords: rotable inventory, full-delay scheduling, maintenance, overhaul, total earliness

Procedia PDF Downloads 521
2565 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems

Authors: Niharika Kaushal, Minni Singh

Abstract:

Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.

Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins

Procedia PDF Downloads 59
2564 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 138
2563 Mechanism of Veneer Colouring for Production of Multilaminar Veneer from Plantation-Grown Eucalyptus Globulus

Authors: Ngoc Nguyen

Abstract:

There is large plantation of Eucalyptus globulus established which has been grown to produce pulpwood. This resource is not suitable for the production of decorative products, principally due to low grades of wood and “dull” appearance but many trials have been already undertaken for the production of veneer and veneer-based engineered wood products, such as plywood and laminated veneer lumber (LVL). The manufacture of veneer-based products has been recently identified as an unprecedented opportunity to promote higher value utilisation of plantation resources. However, many uncertainties remain regarding the impacts of inferior wood quality of young plantation trees on product recovery and value, and with respect to optimal processing techniques. Moreover, the quality of veneer and veneer-based products is far from optimal as trees are young and have small diameters; and the veneers have the significant colour variation which affects to the added value of final products. Developing production methods which would enhance appearance of low-quality veneer would provide a great potential for the production of high-value wood products such as furniture, joinery, flooring and other appearance products. One of the methods of enhancing appearance of low quality veneer, developed in Italy, involves the production of multilaminar veneer, also named “reconstructed veneer”. An important stage of the multilaminar production is colouring the veneer which can be achieved by dyeing veneer with dyes of different colours depending on the type of appearance products, their design and market demand. Although veneer dyeing technology has been well advanced in Italy, it has been focused on poplar veneer from plantation which wood is characterized by low density, even colour, small amount of defects and high permeability. Conversely, the majority of plantation eucalypts have medium to high density, have a lot of defects, uneven colour and low permeability. Therefore, detailed study is required to develop dyeing methods suitable for colouring eucalypt veneers. Brown reactive dye is used for veneer colouring process. Veneers from sapwood and heartwood of two moisture content levels are used to conduct colouring experiments: green veneer and veneer dried to 12% MC. Prior to dyeing, all samples are treated. Both soaking (dipping) and vacuum pressure methods are used in the study to compare the results and select most efficient method for veneer dyeing. To date, the results of colour measurements by CIELAB colour system showed significant differences in the colour of the undyed veneers produced from heartwood part. The colour became moderately darker with increasing of Sodium chloride, compared to control samples according to the colour measurements. It is difficult to conclude a suitable dye solution used in the experiments at this stage as the variables such as dye concentration, dyeing temperature or dyeing time have not been done. The dye will be used with and without UV absorbent after all trials are completed using optimal parameters in colouring veneers.

Keywords: Eucalyptus globulus, veneer colouring/dyeing, multilaminar veneer, reactive dye

Procedia PDF Downloads 328
2562 Dilemma between the Education-Area and the Working-Area in Socialization of Teaching Profession: Scrutiny on the Beginning Teachers through the Relationality of the Regulations and Institutions in Turkey Case

Authors: Dilek Dede

Abstract:

This study aims at scrutinized the dilemma between education place and working place with professional socialization dimension over the beginning teachers in Turkey is to be found the solution for the dilemma in Turkey. The research question is that how can be explained the gap between education place and working place for beginning teachers in Turkey. That expected to contribute to literature with the solutions for shorting the gap between working area and education area of the teaching profession in Turkey case. The study is constructed in two section. Firstly, socialization of the teaching profession and teaching modules have been discussed through the profession, education, working place indicators. In the second section, Secondly, two educational specialists from Turkey has been interviewed about their observation on trainee teachers compelling to participate the class for candidate teachers after university grade. Then, the dilemma between education area and working area of the teaching profession has been detected by of semi-structured and in-depth interviews, the literature on the relationality of institutions and regulation is discussed. The following outcomes have been accessed in accordance with the data set and literature linkage axis: Firstly, teachers coming from the distinctive programmes as an educational background. Hence, teachers who pertain to distinctive cultures work in the same environment. That cause cultural conflicts and complication of socialization of profession. Secondly, the insufficient partnership between schools and universities besides, the education classes lead to a struggle of culture among these two institutions. Thirdly, the education classes are designed as bureaucratic form instead of coalescence between head teachers and trainee teachers around a common culture. That become deep the dilemma. In conclusion, on condition that applied-oriented education that advocates in-service learning is promoted and this programme is supported with well-structured the in-service training through the partnership of universities and schools, the gap between the working-area and education-area might be shortened.

Keywords: beginning teachers, construction of a common, social mobilization in the teaching profession, teacher training institution, the relationality of the regulations and institutions

Procedia PDF Downloads 148
2561 A Method Intensive Top-down Approach for Generating Guidelines for an Energy-Efficient Neighbourhood: A Case of Amaravati, Andhra Pradesh, India

Authors: Rituparna Pal, Faiz Ahmed

Abstract:

Neighbourhood energy efficiency is a newly emerged term to address the quality of urban strata of built environment in terms of various covariates of sustainability. The concept of sustainability paradigm in developed nations has encouraged the policymakers for developing urban scale cities to envision plans under the aegis of urban scale sustainability. The concept of neighbourhood energy efficiency is realized a lot lately just when the cities, towns and other areas comprising this massive global urban strata have started facing a strong blow from climate change, energy crisis, cost hike and an alarming shortfall in the justice which the urban areas required. So this step of urban sustainability can be easily referred more as a ‘Retrofit Action’ which is to cover up the already affected urban structure. So even if we start energy efficiency for existing cities and urban areas the initial layer remains, for which a complete model of urban sustainability still lacks definition. Urban sustainability is a broadly spoken off word with end number of parameters and policies through which the loop can be met. Out of which neighbourhood energy efficiency can be an integral part where the concept and index of neighbourhood scale indicators, block level indicators and building physics parameters can be understood, analyzed and concluded to help emerge guidelines for urban scale sustainability. The future of neighbourhood energy efficiency not only lies in energy efficiency but also important parameters like quality of life, access to green, access to daylight, outdoor comfort, natural ventilation etc. So apart from designing less energy-hungry buildings, it is required to create a built environment which will create less stress on buildings to consume more energy. A lot of literary analysis has been done in the Western countries prominently in Spain, Paris and also Hong Kong, leaving a distinct gap in the Indian scenario in exploring the sustainability at the urban strata. The site for the study has been selected in the upcoming capital city of Amaravati which can be replicated with similar neighbourhood typologies in the area. The paper suggests a methodical intent to quantify energy and sustainability indices in detail taking by involving several macro, meso and micro level covariates and parameters. Several iterations have been made both at macro and micro level and have been subjected to simulation, computation and mathematical models and finally to comparative analysis. Parameters at all levels are analyzed to suggest the best case scenarios which in turn is extrapolated to the macro level finally coming out with a proposal model for energy efficient neighbourhood and worked out guidelines with significance and correlations derived.

Keywords: energy quantification, macro scale parameters, meso scale parameters, micro scale parameters

Procedia PDF Downloads 157
2560 Phenolic Compounds and Antioxidant Capacity of Tuckeroo (Cupaniopsis anacardioides) Fruits

Authors: Ngoc Minh Quynh Pham, Quan V. Vuong, Michael C. Bowyer, Christopher J. Scarlett

Abstract:

Tuckeroo (Cupaniopsis anacardioides) is an Australian native plant and is grown in the coastal regions in New South Wales, Queensland and Northern Australia. Its fruits have been eaten by birds; however there is no information on phytochemical and antioxidant capacity of these fruits. This study aimed to determine the phenolic compounds (TPC), flavonoids (TFC), proanthocyanidins (TPro) and antioxidant capacity in the whole or different parts of tuckeroo fruit including skin, flesh and seed. Whole and partly tuckeroo fruits were collected and immediately freeze dried to constant weight and then ground to small particle sizes (<1mm mesh). Samples were extracted in 50% methanol using an ultrasonic bath set at temperature 40 °C for 30 minutes. TPC, TFC, TPro and antioxidant capacity were measured by spectrophotometric analysis. The results showed that the whole fruits contained 106.23 mg GAE/g of TPC, 67.67 mg CAE/g of TFC and 56.74 mg CAE/g of TPro. These fruits also possessed high antioxidant capacity (DPPH: 263.78 mg TroE/g, ABTS: 346.98 mg TroE/g, CUPRAC: 370.12 mg TroE/g and FRAP: 176.30 mg TroE/g), revealing that these fruits are rich source of antioxidants. The results also showed that distribution of the antioxidants was varied in different parts of the fruits. Skin had the highest levels of TPC, TFC, and TPro as well as antioxidant properties, followed by the seed and flesh had the lowest levels of phenolic compounds and antioxidant capacity. Of note, levels of phenolic compounds and antioxidant capacity of the skin were significantly higher than those of the whole fruits. Therefore, the skin of tuckeroo fruits is recommended as a starting material for extraction and purification of phenolic compounds as potential antioxidants for further utilisation in the food and pharmaceutical industries.

Keywords: antioxidant capacity, Cupaniopsis anacardioides, phenolic compounds, tuckeroo fruit

Procedia PDF Downloads 378
2559 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration

Procedia PDF Downloads 275
2558 Strengthening National Salt Industry through Cultivation Upgrading and Product Diversification

Authors: Etty Soesilowati

Abstract:

This research was intended to: (1) designing production systems that produce high quality salt and (2) diversification of salt products. This research used qualitative and quantitative approaches which Garam Mas Ltd. as the research site. The data were analyzed interactively and subjected to laboratory tests. The analyses showed that salt production system using HDPE geomembranes produced whiter and cleaner salts than those produced by conventional methods without HDPE geomembranes. High quality consumption salt contained 97% NaCl and a maximum of 0.05% water, in the form of white minute crystals and usually used for table salt of food and snack seasoning, souses and cheese and vegetable oil industries. Medium grade salt contained 94.7%-97% NaCl and 3%-7% water and usually used for kitchen salt, soy sauce, tofu industries and cattle feeding. Low quality salt contained 90%-94.7% NaCl and 5%-10% water, with dull white color and usually used for fish preservation and agriculture. The quality and quantity of salts production were influenced by temperatures, weather, water concentrations used during production processes and the discipline of salt farmers itself. The use of water temperature less than 23 °Be during the production processes produced low quality salts. Optimizing cultivation of the production process from raw material to end product (consumption salt) should be attempted to produce quality salt that fulfills the Indonesian National Standard. Therefore, the integrated policies among stakeholders are really needed to build strong institutional base at salt farmer level. This might be achieved through the establishment of specific region for salt production.

Keywords: cultivation system, diversification, salt products, high quality salt

Procedia PDF Downloads 382
2557 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 342
2556 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study

Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.

Keywords: DFT study, copper oxide cluster, MOFs, methane conversion

Procedia PDF Downloads 46
2555 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries

Authors: Rafat Alwazna

Abstract:

Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.

Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions

Procedia PDF Downloads 199
2554 Bulk Electrical Resistivity of Geopolymer Mortars: The Effect of Binder Composition and Alkali Concentration

Authors: Mahdi Babaee, Arnaud Castel

Abstract:

One of the main hurdles for commercial adaptation of geopolymer concrete (GPC) as a low-embodied-carbon alternative for Portland cement concrete (PCC) is the durability aspects and its long-term performance in aggressive/corrosive environments. GPC is comparatively a new engineering material and in the absence of a track record of successful durability performance, proper experimental studies to investigate different durability-related characteristics of GPC seem inevitable. In this context, this paper aims to study the bulk electrical resistivity of geopolymer mortars fabricated of blends of low-calcium fly ash (FA) and ground granulated blast-furnace slag (GGBS). Bulk electrical resistivity is recognized as one of the most important parameters influencing the rate of corrosion of reinforcing bars during the propagation phase of corrosion. To investigate the effect of alkali concentration on the resistivity of the samples, 100x200 mm mortar cylinders were cast at different alkali concentration levels, whereas the modulus ratio (the molar ratio of SiO2/Na2O) was fixed for the mixes, and the bulk electrical resistivity was then measured. Also, the effect of the binder composition was assessed with respect to the ratio of FA to GGBS used. Results show a superior performance of samples with higher GGBS content. Lower concentration of the solution has increased the resistivity by reducing the amount of mobile alkali ions in the pore solution. Moreover, GGBS-based samples showed a much sharper increase in the electrical resistivity with decreasing the moisture content.

Keywords: bulk resistivity, corrosion, durability, geopolymer concrete

Procedia PDF Downloads 240