Search results for: trans-european transport network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6418

Search results for: trans-european transport network

5578 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: slip control, SOM network, torque distribution, wheeled Robot

Procedia PDF Downloads 127
5577 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region

Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang

Abstract:

During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.

Keywords: cross section, neutron transport, numerical simulation, on-the-fly

Procedia PDF Downloads 197
5576 Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions

Authors: Anna Pajdak, Mateusz Kudasik, Norbert Skoczylas, Leticia Teixeira Palla Braga

Abstract:

A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology.

Keywords: coal, confining pressure, gas transport, sorption

Procedia PDF Downloads 121
5575 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 262
5574 Point-of-Interest Recommender Systems for Location-Based Social Network Services

Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim

Abstract:

Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.

Keywords: location-based social network services, point-of-interest, recommender systems, business analytics

Procedia PDF Downloads 229
5573 Comparative Study on Manet Using Soft Computing Techniques

Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri

Abstract:

Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.

Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network

Procedia PDF Downloads 349
5572 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon

Procedia PDF Downloads 239
5571 Model for Assessment of Quality Airport Services

Authors: Cristina da Silva Torres, José Luis Duarte Ribeiro, Maria Auxiliadora Cannarozzo Tinoco

Abstract:

As a result of the rapid growth of the Brazilian Air Transport, many airports are at the limit of their capacities and have a reduction in the quality of services provided. Thus, there is a need of models for assessing the quality of airport services. Because of this, the main objective of this work is to propose a model for the evaluation of quality attributes in airport services. To this end, we used the method composed by literature review and interview. Structured a working method composed by 5 steps, which resulted in a model to evaluate the quality of airport services, consisting of 8 dimensions and 45 attributes. Was used as base for model definition the process mapping of boarding and landing processes of passengers and luggage. As a contribution of this work is the integration of management process with structuring models to assess the quality of services in airport environments.

Keywords: quality airport services, model for identification of attributes quality, air transport, passenger

Procedia PDF Downloads 535
5570 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: electric vehicles, EV, power consumption, power management, simulation

Procedia PDF Downloads 516
5569 Decision Framework for Cross-Border Railway Infrastructure Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in decision process and –many times- the investment and business risks are high. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analyzed. Adopting the on system of system methodological approach, the decision making framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey and Bulgaria.

Keywords: decision making, system of system, cross-border, infrastructure project

Procedia PDF Downloads 314
5568 GPS Refinement in Cities Using Statistical Approach

Authors: Ashwani Kumar

Abstract:

GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising.

Keywords: global positioning system, statistical approach, intelligent transport systems, least squares estimation

Procedia PDF Downloads 288
5567 Uniaxial Alignment and Ion Exchange Doping to Enhance the Thermoelectric Properties of Organic Polymers

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

This project delves into the efficiency of uniaxial alignment and ion exchange doping as methods to optimize the thermoelectric properties of organic polymers. The anisotropic nature of charge transport in conjugated polymers is capitalized upon through the uniaxial alignment of polymer backbones, ensuring charge transport is streamlined along these backbones. Ion exchange doping has demonstrated superiority over traditional molecular and electrochemical doping methods, amplifying charge carrier densities. By integrating these two techniques, we've observed marked improvements in the thermoelectric attributes of specific conjugated polymers such as PBTTT and DPP based polymers. We demonstrate respectable power factors of 172.6 μW m⁻¹ K⁻² in PBTTT system and 41.7 μW m⁻¹ K⁻² in DPP system.

Keywords: organic electronics, thermoelectrics, uniaxial alignment, ion exchange doping

Procedia PDF Downloads 69
5566 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
5565 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 284
5564 The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ

Authors: Risdiana, D. Suhendar, S. Pratiwi, W. A. Somantri, T. Saragi

Abstract:

Superconductor is a promising material for future applications especially for energy saving because of their advantages properties such as zero electrical resistivity when they are cooled down to sufficiently low temperatures. However, the mechanism describing the role of physical properties in superconductor is far from being understood clearly, so that the application of this material for wider benefit in various industries is very limited. Most of superconductors are cuprate compounds, which has CuO2 as a conducting plane in their crystal structures. The study of physical properties through the partially substitution of impurity for Cu in superconducting cuprates has been one of great interests in relation to the mechanism of superconductivity. Different behaviors between the substitution of nonmagnetic impurity and magnetic impurity for Cu are observed. For examples, the superconductivity and Cu-spin fluctuations in the electron-doped system are suppressed through the substitution of magnetic Ni for Cu more markedly than through the substitution of nonmagnetic Zn for Cu, which is contrary to the result in the hole-doped system. Here, we reported the effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0.01, 0.02, and 0.05, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y. Some reasons for these results will be discussed.

Keywords: DC magnetic-susceptibility, electron mobility, Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ, normal state

Procedia PDF Downloads 349
5563 Oil Demand Forecasting in China: A Structural Time Series Analysis

Authors: Tehreem Fatima, Enjun Xia

Abstract:

The research investigates the relationship between total oil consumption and transport oil consumption, GDP, oil price, and oil reserve in order to forecast future oil demand in China. Annual time series data is used over the period of 1980 to 2015, and for this purpose, an oil demand function is estimated by applying structural time series model (STSM). The technique also uncovers the Underline energy demand trend (UEDT) for China oil demand and GDP, oil reserve, oil price and UEDT are considering important drivers of China oil demand. The long-run elasticity of total oil consumption with respect to GDP and price are (0.5, -0.04) respectively while GDP, oil reserve, and price remain (0.17; 0.23; -0.05) respectively. Moreover, the Estimated results of long-run elasticity of transport oil consumption with respect to GDP and price are (0.5, -0.00) respectively long-run estimates remain (0.28; 37.76;-37.8) for GDP, oil reserve, and price respectively. For both model estimated underline energy demand trend (UEDT) remains nonlinear and stochastic and with an increasing trend of (UEDT) and based on estimated equations, it is predicted that China total oil demand somewhere will be 9.9 thousand barrel per day by 2025 as compare to 9.4 thousand barrel per day in 2015, while transport oil demand predicting value is 9.0 thousand barrel per day by 2020 as compare to 8.8 thousand barrel per day in 2015.

Keywords: china, forecasting, oil, structural time series model (STSM), underline energy demand trend (UEDT)

Procedia PDF Downloads 283
5562 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 364
5561 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: microbiological analysis, shelf life, transport damage, volatile organic compounds

Procedia PDF Downloads 425
5560 Bypassing Docker Transport Layer Security Using Remote Code Execution

Authors: Michael J. Hahn

Abstract:

Docker is a powerful tool used by many companies such as PayPal, MetLife, Expedia, Visa, and many others. Docker works by bundling multiple applications, binaries, and libraries together on top of an operating system image called a container. The container runs on a Docker engine that in turn runs on top of a standard operating system. This centralization saves a lot of system resources. In this paper, we will be demonstrating how to bypass Transport Layer Security and execute remote code within Docker containers built on a base image of Alpine Linux version 3.7.0 through the use of .apk files due to flaws in the Alpine Linux package management program. This exploit renders any applications built using Docker with a base image of Alpine Linux vulnerable to unwanted outside forces.

Keywords: cloud, cryptography, Docker, Linux, security

Procedia PDF Downloads 198
5559 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 228
5558 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 347
5557 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 426
5556 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
5555 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 100
5554 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 326
5553 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 512
5552 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network

Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib

Abstract:

The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.

Keywords: heat exchanger network, synthesis, NLP, optimization

Procedia PDF Downloads 163
5551 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 56
5550 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 101
5549 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 195