Search results for: semantic memory
809 Provenance in Scholarly Publications: Introducing the provCite Ontology
Authors: Maria Joseph Israel, Ahmed Amer
Abstract:
Our work aims to broaden the application of provenance technology beyond its traditional domains of scientific workflow management and database systems by offering a general provenance framework to capture richer and extensible metadata in unstructured textual data sources such as literary texts, commentaries, translations, and digital humanities. Specifically, we demonstrate the feasibility of capturing and representing expressive provenance metadata, including more of the context for citing scholarly works (e.g., the authors’ explicit or inferred intentions at the time of developing his/her research content for publication), while also supporting subsequent augmentation with similar additional metadata (by third parties, be they human or automated). To better capture the nature and types of possible citations, in our proposed provenance scheme metaScribe, we extend standard provenance conceptual models to form our proposed provCite ontology. This provides a conceptual framework which can accurately capture and describe more of the functional and rhetorical properties of a citation than can be achieved with any current models.Keywords: knowledge representation, provenance architecture, ontology, metadata, bibliographic citation, semantic web annotation
Procedia PDF Downloads 118808 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 219807 Analyzing Semantic Feature Using Multiple Information Sources for Reviews Summarization
Authors: Yu Hung Chiang, Hei Chia Wang
Abstract:
Nowadays, tourism has become a part of life. Before reserving hotels, customers need some information, which the most important source is online reviews, about hotels to help them make decisions. Due to the dramatic growing of online reviews, it is impossible for tourists to read all reviews manually. Therefore, designing an automatic review analysis system, which summarizes reviews, is necessary for them. The main purpose of the system is to understand the opinion of reviews, which may be positive or negative. In other words, the system would analyze whether the customers who visited the hotel like it or not. Using sentiment analysis methods will help the system achieve the purpose. In sentiment analysis methods, the targets of opinion (here they are called the feature) should be recognized to clarify the polarity of the opinion because polarity of the opinion may be ambiguous. Hence, the study proposes an unsupervised method using Part-Of-Speech pattern and multi-lexicons sentiment analysis to summarize all reviews. We expect this method can help customers search what they want information as well as make decisions efficiently.Keywords: text mining, sentiment analysis, product feature extraction, multi-lexicons
Procedia PDF Downloads 331806 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 437805 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 261804 The Impact of Neuroscience Knowledge on the Field of Education
Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena
Abstract:
Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors
Procedia PDF Downloads 62803 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.Keywords: chaotic behavior, wavelet, noise reduction, river flow
Procedia PDF Downloads 469802 Designing for Wearable Interactions: Exploring Care Design for Design Anthropology and Participatory Design
Authors: Wei-Chen Chang, Yu-Cheng Pei
Abstract:
This research examines wearable interaction design to mediate the design anthropology and participatory design found in technology and fashion. We will discuss the principles of design anthropology and participatory design using a wearable and fashion product process to transmit the ‘people-situation-reason-object’ method and analyze five sense applied examples that provide new thinking for designers engaged in future industry. Design anthropology and Participatory Design attempt to engage physiological and psychological design through technology-function, meaning-form and fashion aesthetics to achieve cognition between user and environment. The wearable interaction provides technological characteristics and semantic ideas transmitted to craft-cultural, collective, cheerful and creative performance. It is more confident and innovative attempt, that is able to achieve a joyful, fundamental interface. This study takes two directions for cultural thinking as the basis to establish a set of life-craft designs with interactive experience objects by users that assist designers in examining the sensual feelings to initiate a new lifestyle value.Keywords: design anthropology, wearable design, design communication, participatory design
Procedia PDF Downloads 238801 The Loss of Oral Performative Semantic Influence of the Qur'an in Its Translations
Authors: Alalddin Al-Tarawneh
Abstract:
In its literal translation, the Qur’an is frequently subject to misinterpretation as a result of failures to deliver its meaning into any language. This paper relies on the genuine aspect that the Qur’an is an oral performance in its nature; and the objective of any Qur’an translation is to deliver its meaning in English. Therefore, it approaches the translation of the Qur’an beyond the usual formal linguistic approach in order to include an extra-textual factor. This factor is the recitation or oral performance of the Qur’an, that is, tajweed as it is termed in Arabic. The translations used in this paper to apply the suggested approach were carefully chosen to be representative of the problems that exist in many Qur’an translations. These translations are The Meaning of the Holy Quran: Translation and Commentary by Ali (1989), The Meaning of the Glorious Koran by Pickthall (1997/1930), and The Quran: Arabic Text with Corresponding English Meanings by Sahih (2010). Through the examples cited in this paper, it is suggested that the agents involved in producing a ‘translation’ of the Holy Qur’an have to take into account its oral aspect which yields additional senses and meanings that are not being captured by adhering to the words of the ‘written’ discourse. This paper attempts in its translation into English.Keywords: oral performance, tajweed, Qur'an translation, recitation
Procedia PDF Downloads 150800 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 72799 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features
Authors: Ashis Pradhan, Mohan P. Pradhan
Abstract:
Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition
Procedia PDF Downloads 415798 Theater Metaphor in Event Quantification: A Corpus Study
Authors: Zhuo Jing-Schmidt, Jun Lang
Abstract:
Numeral classifiers are common in Asian languages. Research on numeral classifiers primarily focuses on noun classifiers that quantify and individuate nominal referents. There is a scarcity of research on event quantification using verb classifiers. This study aims to understand the semantic and conceptual basis of event quantification in Chinese. From a usage-based Construction Grammar perspective, this study presents a corpus analysis of event quantification in Chinese. Drawing on a large balanced corpus of contemporary Chinese, we analyze 667 NOUN col-lexemes totaling 31136 tokens of a productive numeral classifier construction in Chinese. Using collostructional analysis of the collexemes, the results show that the construction quantifies and classifies dramatic events using a theater-based conceptual metaphor. We argue that the usage patterns reflect the cultural entrenchment of theater as in Chinese conceptualization and the construal of theatricality in linguistic expression. The study has implications for cognitive semantics and construction grammar.Keywords: event quantification, classifier, corpus, metaphor
Procedia PDF Downloads 85797 Metaphor Institutionalization as Phase Transition: Case Studies of Chinese Metaphors
Abstract:
Metaphor institutionalization refers to the propagation of a metaphor that leads to its acceptance in speech community as a norm of the language. Such knowledge is important to both theoretical studies of metaphor and practical disciplines such as lexicography and language generation. This paper reports an empirical study of metaphor institutionalization of 14 Chinese metaphors. It first explores the pattern of metaphor institutionalization by fitting the logistic function (or S-shaped curve) to time series data of conventionality of the metaphors that are automatically obtained from a large-scale diachronic Chinese corpus. Then it reports a questionnaire-based survey on the propagation scale of each metaphor, which is measured by the average number of subjects that can easily understand the metaphorical expressions. The study provides two pieces of evidence supporting the hypothesis that metaphor institutionalization is a phrase transition: (1) the pattern of metaphor institutionalization is an S-shaped curve and (2) institutionalized metaphors generally do not propagate to the whole community but remain in equilibrium state. This conclusion helps distinguish metaphor institutionalization from topicalization and other types of semantic change.Keywords: metaphor institutionalization, phase transition, propagation scale, s-shaped curve
Procedia PDF Downloads 172796 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 169795 A Conjugate Gradient Method for Large Scale Unconstrained Optimization
Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami
Abstract:
Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence
Procedia PDF Downloads 424794 Product Form Bionic Design Based on Eye Tracking Data: A Case Study of Desk Lamp
Authors: Huan Lin, Liwen Pang
Abstract:
In order to reduce the ambiguity and uncertainty of product form bionic design, a product form bionic design method based on eye tracking is proposed. The eye-tracking experiment is designed to calculate the average time ranking of the specific parts of the bionic shape that the subjects are looking at. Key bionic shape is explored through the experiment and then applied to a desk lamp bionic design. During the design case, FAHP (Fuzzy Analytic Hierachy Process) and SD (Semantic Differential) method are firstly used to identify consumer emotional perception model toward desk lamp before product design. Through investigating different desk lamp design elements and consumer views, the form design factors on the desk lamp product are reflected and all design schemes are sequenced after caculation. Desk lamp form bionic design method is combined the key bionic shape extracted from eye-tracking experiment and priority of desk lamp design schemes. This study provides an objective and rational method to product form bionic design.Keywords: Bionic design; Form; Eye tracking; FAHP; Desk lamp
Procedia PDF Downloads 229793 Learning Based on Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment
Authors: Eiko Takaoka, Yoshiyuki Fukushima, Koichiro Hirose, Tadashi Hasegawa
Abstract:
Although all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.Keywords: computer science unplugged, computer science outreach, high school curriculum, experimental evaluation
Procedia PDF Downloads 389792 New Product Development Typologies: An Analysis of Publications and Citations between 1992 and 2012
Authors: Ana Paula Vilas Boas Viveiros Lopes, Marly Monteiro de Carvalho
Abstract:
The new product development for decades has favored companies that can put their products to market quickly and efficiently, providing sustainable competitive advantage difficult to be achieved by their competitors. This paper presents the outcomes of a systematic review of the literature relating to new product development that was published between 1992 and 2012. A hybrid methodological approach that combines bibliometrics, content analysis and semantic analysis was applied. The review discusses the publication patterns, focusing on aspects related to scientific collaboration. The results show that the main academic journal that discusses this theme is “Journal of Product Innovation Management”. Although the first paper relating to this theme was published in 1992, the number of publications on the subject only began to increase substantially in 1999. Most of the studies reviewed in this paper applied qualitative research methods, indicating that most of the research on the theme is still in an exploratory phase.Keywords: project type, project typology, new product development, sustainable competitive advantage
Procedia PDF Downloads 449791 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment
Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader
Abstract:
The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.Keywords: dialogue, e-learning, FRAME, information system, natural language
Procedia PDF Downloads 381790 11-Round Impossible Differential Attack on Midori64
Authors: Zhan Chen, Wenquan Bi
Abstract:
This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori
Procedia PDF Downloads 277789 Effect of Removing Hub Domain on Human CaMKII Isoforms Sensitivity to Calcium/Calmodulin
Authors: Ravid Inbar
Abstract:
CaMKII (calcium-calmodulin dependent protein kinase II) makes up 2% of the protein in our brain and has a critical role in memory formation and long-term potentiation of neurons. Despite this, research has yet to uncover the role of one of the domains on the activation of this kinase. The following proposes to express the protein without the hub domain in E. coli, leaving only the kinase and regulatory segment of the protein. Next, a series of kinase assays will be conducted to elucidate the role the hub domain plays on CaMKII sensitivity to calcium/calmodulin activation. The hub domain may be important for activation; however, it may also be a variety of domains working together to influence protein activation and not the hub alone. Characterization of a protein is critical to the future understanding of the protein's function, as well as for producing pharmacological targets in cases of patients with diseases.Keywords: CaMKII, hub domain, kinase assays, kinase + reg seg
Procedia PDF Downloads 92788 Immigration Solutions for the United States
Authors: Philip Robert Alldritt
Abstract:
The continuing increase in human migration is at crisis levels in all areas of the planet. The causes are varied, and the risks are high for the migrants. Migration has been ongoing since the beginning of human emergence on the planet, but for the first time in our historic memory has the, migration reached this level of critical mass. The causes are many. Climate collapse, economic opportunity, drug cartel activity, political upheaval, and gang wars. Many locations are seemingly “within reach” of the migrants, and the push factors are so loaded with hopelessness that almost anyone would be willing to risk anything to improve their conditions. There is no argument about that mass migrations are occurring and will increase in the future. The solutions to this increase are complex. This paper will examine the causes of migration and attempt to provide some reasonable solutions to mitigate the migrations with equitable outcomes that may guide immigration policy in impacted areas.Keywords: immigration, crisis, climate, cartels
Procedia PDF Downloads 75787 Informational Efficiency and Integration: Evidence from Gulf Cooperation Council (GCC) Shariah Equity Market
Authors: Sania Ashraf
Abstract:
The paper focuses on the prevalence of informational efficiency and integration of GCC Shariah Equity market for the period of 01st January 2010 to 31st June 2015 with daily equity returns of Kuwait, Oman, Qatar, Bahrain, Saudi Arabia and United Arab Emirates. The study employs traditional as well as the modern approach of tracing out the efficiency and integration in the return series. From the results of efficiency it was observed that the market lacked efficiency in terms of its past information. The results of integration test clearly indicates that there was a long memory in the returns of GCC Shariah during the study period. Hence it was concluded and proved that the returns of all GCC Equity Shariah were not informationally efficient but fractionally integrated during the study period.Keywords: efficiency, Fama, GCC shariah, hurst exponent, integration, serial correlation
Procedia PDF Downloads 362786 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 332785 Harmful Algal Poisoning Symptoms in Coastal Areas of Nigeria
Authors: Medina Kadiri
Abstract:
Nigeria has an extensive coastline of 853 km long between latitude 4°10′ to 6°20′ N and longitude 2°45′ to 8°35′ E and situated in the Gulf of Guinea within the Guinea Current Large Marine Ecosystem. There is a substantial coastal community relying on this region for their livelihood of fishing, aquaculture, mariculture for various sea foods either for consumption or economic sustenance or both. Socio-economic study was conducted, using questionnaires and interview, to investigate the health symptoms of harmful algae experienced by these communities on consumption of sea foods. Eighteen symptoms were recorded. Of the respondents who experienced symptoms after consumption of sea foods, overall, more people (33.5%) experienced vomiting as a symptom, followed by nausea (14.03%) and then diarrhea (13.57%). Others were headache (9.95%), mouth tingling (8.6%) and tiredness (7.24%).The least were muscle pain, rashes, confusion, chills, burning sensation, breathing difficulty and balance difficulty which represented 0.45% each and the rest (dizziness, digestive tract tumors, itching, memory loss, & stomach pain) were less than 3% each. In terms of frequency, the most frequent symptom was diarrhea with 87.5% occurrence, closely followed by vomiting with 81.3%. Tiredness was 75% while nausea was 62.5% and headache 50%. Others such as dizziness, itching, memory loss, mouth tingling and stomach pain had about 40% occurrence or less. The least occurring symptoms were muscle pain, rashes, confusion, chills and balance difficulty and burning sensation occurring only once i.e 6.3%. Breathing difficulty was last but one with 12.5%. Visible symptom from seafood and the particular seafood consumed that prompted the visible symptoms, shows that 3.5% of the entire respondents who ate crab experienced various symptoms ranging from vomiting (2.4%), itching (0.5%) and headache (0.4%). For periwinkle, vomiting had 1.7%, while 1.2% represented diarrhea and nausea symptom comprised 0.8% of all the respondents who ate periwinkle. Some respondents who consumed fish shows that 0.4% of the respondents had Itching. From the respondents who preferred to consume shrimps/crayfish and crab, shrimps/crayfish, crab and periwinkle, the most common illness was tiredness (1.2%), while 0.5% had experienced diarrhea and many others. However, for most respondents who claimed to have no preference for any seafood, with 55.7% affirming this with vomiting being the highest (6.1%), followed closely by mouth tingling/ burning sensation (5.8%). Examining the seasonal influence on visible symptoms revealed that vomiting occurred more in the month of January with 5.5%, while headache and itching were predominant in October with (2.8%). Nausea has 3.1% in January than any season of the year, 2.6% of the entire respondents opined to have experience diarrhea in October than in any other season of the year. Regular evaluation of harmful algal poisoning symptoms is recommended for coastal communities.Keywords: coastal, harmful algae, human poisoning symptoms, Nigeria, phycotoxins
Procedia PDF Downloads 288784 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 155783 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures
Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar
Abstract:
In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization
Procedia PDF Downloads 211782 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities
Authors: Margarida Franca
Abstract:
The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.Keywords: geography of religion, sacred places, territoriality, Catholic Church
Procedia PDF Downloads 326781 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 61780 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults
Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer
Abstract:
This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.Keywords: communication, cooperation, development, interaction, neuroscience
Procedia PDF Downloads 254