Search results for: sampling algorithms
4150 The Influence of the Vocational Teachers Empowerment toward the Vocational High Schools’ Performance Based on the Education National Standards of Indonesia
Authors: Abdul Haris Setiawan
Abstract:
Teachers empowerment is one of the important factors considered to contribute significantly to the achievement of the national education goals. This study was conducted to determine the influence on the vocational teachers empowerment toward the performance of the vocational high schools based on the Education National Standards of Indonesia. The population of the study was all vocational teachers at the State Vocational High schools in Surakarta, Central Java Province, Indonesia. The sampling technique used proportional random sampling technique. This study used a quantitative descriptive statistical analysis techniques. The data was collected using questionnaires. The data has been collected and then tested using analysis requirements test. Having tested using the requirements analysis and then the data processed using regression analysis between the independent and dependent variables to determine the effect and the regression equation. The results of the study found that the level of vocational high schools’ performance based on the Education National Standards of Indonesia was 74.29%, including in the high category; the level of vocational teachers empowerment was 76.20%, including in the high category; there was a positive influence of vocational teachers empowerment toward the vocational high schools’ performance based on the Education National Standards of Indonesia with a correlation coefficient of 0,886, and a contribution of 78.50% with the regression equation Y = 79.431 +0.534 X.Keywords: vocational teachers, empowerment, vocational high school, the education national standards
Procedia PDF Downloads 3944149 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 1984148 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach
Authors: Ali Akbar Heydari
Abstract:
Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter
Procedia PDF Downloads 1554147 Human Resource Management Challenges in Age of Artificial Intelligence: Methodology of Case Analysis
Authors: Olga Leontjeva
Abstract:
In the age of Artificial Intelligence (AI), some organization management approaches need to be adapted or changed. Human Resource Management (HRM) is a part of organization management that is under the managers' focus nowadays, because AI integration into organization activities brings some HRM-connected challenges. The topic became more significant during the crises of many organizations in the world caused by the coronavirus pandemic (COVID-19). The paper presents an approach, which will be used for the study that is going to be focused on the various case analysis. The author of the future study will analyze the cases of the organizations from Latvia and Spain that are grouped by the size, type of activity and area of business. The information for the cases will be collected through structured interviews and online surveys. The main result presented is the questionnaire developed that will be used for the study as well as the definition and description of sampling. The first round of the survey will be based on convenience sampling that is the main limitation of the study. To conclude, the approach developed will help to collect valid data if the organizations participating in the survey are ready to share their cases in depth, so the researchers could draw the right conclusions and generalize compared organizations’ cases. The questionnaire developed for the survey is applicable for both written online data collection as well as for the interviews. The case analysis will help to identify some HRM challenges that are connected to AI integration into organization activities such as management of different generation employees and their training peculiarities.Keywords: age of artificial intelligence, case analysis, generation Y and Z employees, human resource management
Procedia PDF Downloads 1694146 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 2304145 Rural Development through Women Participation in Livestock Care and Management in District Faisalabad
Authors: Arfan Riasat, M. Iqbal Zafar, Gulfam Riasat
Abstract:
Pakistani women actively participate in livestock management activities, along with their normal domestic chores. The study was designed to measure the position and contribution of rural women, their constraints in livestock management activities and mainly how the rural women contribute for development in the district Faisalabad. It was envisioned that women participation in livestock activities have rarely been investigated. A multistage random sampling technique was used to collect the data from Tehsil Summandry of the district selected at random. Two union councils were taken by using simple random sampling technique. Four Chak (village) from each union council were selected at random and fifteen woman were further selected randomly from each selected chak. The results show that a vast majority of women were illiterate, having annual family income of one to two lac. They are living in joint family system. Their main occupation is agriculture and they spend long hours in whole livestock related activities to support their families. A large proportion of the respondents reported that they had to face problems and constraints in livestock activities in the context of decision making, medication, awareness, training along with social and economic issues. Analysis indicated that education level of women, income of household, age were significantly associated with level of participation. Women participation in livestock activities increased production and they were involved in income generating activities for better economic conditions of their families.Keywords: women, participation, livestock, management, rural development
Procedia PDF Downloads 4054144 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1334143 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration
Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan
Abstract:
The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning
Procedia PDF Downloads 374142 A Study of Cost and Revenue Earned from Tourist Walking Street Activities in Songkhla City Municipality, Thailand
Authors: Weerawan Marangkun
Abstract:
This study is a survey intended to investigate cost, revenue and factors affecting changes in revenue and to provide guidelines for improving factors affecting changes in revenue from tourist walking street activities in Songkhla City Municipality. Instruments used in this study were structured interviews, using Yaman table (1973) where the random sampling error was+ 10%. The sample consisting of 83 entrepreneurs were drawn from a total population of 272. The purposive sampling method was used. Data were collected during the 6-month period from December 2011 until May 2012. The findings indicate that the cost paid by an entrepreneur in connection with his/her services for tourists is mainly for travel, which stands at about 290 Baht per day. Each entrepreneur earns about 3,850 Baht per day, which means about 400,000 Baht per year. The combined total revenue from walking street tourist activities is about 108.8 million Baht per year. Such activities add economic value to tourist facilities due to expenditures by tourists and provide the entrepreneurs with considerable income. Factors affecting changes in revenue from tourist walking street activities are: the increase in the number of entrepreneurs; the holding of trade fairs, events or interesting shows in the vicinity; and weather conditions (e.g. abundant rainfall, which can contribute to a decrease in the number of tourists). Suggested measures to improve factors affecting changes in the income are: addition or creation of new activities; regulation of operations of the stalls and parking area; and generation of greater publicity through the social network.Keywords: cost, revenue, tourist, walking street
Procedia PDF Downloads 3624141 The Role of Metaheuristic Approaches in Engineering Problems
Authors: Ferzat Anka
Abstract:
Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems
Procedia PDF Downloads 774140 Identification of Factors Affecting Technical Efficiency Sugar Cane Farming in East Java
Authors: Noor Rizkiyah, Djoko Koestiono, Budi Setiawan, Nuhfil Hanani
Abstract:
This research aims to identify the factors that affect the production of sugar cane, the level of technical efficiency of farming sugar cane ratooning and factors that affect technical inefficiency. Research carried out in Malang of East Java with sampling in a non random sampling stratified proportioned and obtained 172 household sugar cane farmers who are classified based on the level of ratooning i.e. ratooning I 3-4 times ratoning, ratooning II 5-10 times ratoning as well as ratooning III > 10 times ratoning. The method used is the Stochastic Production Frontier approach MLE (maximum likelihood estimation). From the results obtained by analysis of the factors affecting the production of sugar cane farming land, namely ratooning fertilizer use ZA petroganic, use of fertilizer and seeds of embroidery and labor. While the average level of sugar cane farmers ratooning efficiency of 0.78 and categorized yet efficient technically. For the factors that influence the technical inefficiency i.e. age, number of dependents and the frequency of family ratooning. Though not yet technically efficient but sugar cane farmers cultivate cultivation remains ratooning. But if it is done repeatedly ratooning will result in a decrease in the production of sugar cane. Whereas the results of the analysis of farming level of feasibility or RC ratooning sugar cane ratio of 1.15 so worth trying to accomplish. Thus with increased technology and combining the use of inputs is an attempt to let the technical efficiency can be achieved so that the more worthy to be organised.Keywords: technical efficiency, production, sugarcane, frontier
Procedia PDF Downloads 1734139 Self-Esteem on University Students by Gender and Branch of Study
Authors: Antonio Casero Martínez, María de Lluch Rayo Llinas
Abstract:
This work is part of an investigation into the relationship between romantic love and self-esteem in college students, performed by the students of matter "methods and techniques of social research", of the Master Gender at the University of Balearic Islands, during 2014-2015. In particular, we have investigated the relationships that may exist between self-esteem, gender and field of study. They are known as gender differences in self-esteem, and the relationship between gender and branch of study observed annually by the distribution of enrolment in universities. Therefore, in this part of the study, we focused the spotlight on the differences in self-esteem between the sexes through the various branches of study. The study sample consists of 726 individuals (304 men and 422 women) from 30 undergraduate degrees that the University of the Balearic Islands offers on its campus in 2014-2015, academic year. The average age of men was 21.9 years and 21.7 years for women. The sampling procedure used was random sampling stratified by degree, simple affixation, giving a sampling error of 3.6% for the whole sample, with a confidence level of 95% under the most unfavorable situation (p = q). The Spanish translation of the Rosenberg Self-Esteen Scale (RSE), by Atienza, Moreno and Balaguer was applied. The psychometric properties of translation reach a test-retest reliability of 0.80 and an internal consistency between 0.76 and 0.87. In this paper we have obtained an internal consistency of 0.82. The results confirm the expected differences in self-esteem by gender, although not in all branches of study. Mean levels of self-esteem in women are lower in all branches of study, reaching statistical significance in the field of Science, Social Sciences and Law, and Engineering and Architecture. However, analysed the variability of self-esteem by the branch of study within each gender, the results show independence in the case of men, whereas in the case of women find statistically significant differences, arising from lower self-esteem of Arts and Humanities students vs. the Social and legal Sciences students. These findings confirm the results of numerous investigations in which the levels of female self-esteem appears always below the male, suggesting that perhaps we should consider separately the two populations rather than continually emphasize the difference. The branch of study, for its part has not appeared as an explanatory factor of relevance, beyond detected the largest absolute difference between gender in the technical branch, one in which women are historically a minority, ergo, are no disciplinary or academic characteristics which would explain the differences, but the differentiated social context that occurs within it.Keywords: study branch, gender, self-esteem, applied psychology
Procedia PDF Downloads 4674138 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 3524137 Development of Star Image Simulator for Star Tracker Algorithm Validation
Authors: Zoubida Mahi
Abstract:
A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.Keywords: star tracker, star simulation, star detection, centroid, noise, scenario
Procedia PDF Downloads 974136 Effects of Sports Participation on Academics Performance of Students at Yaa Asantewaa Girls’ Senior High School
Authors: Alhassan Dramani Yakubu
Abstract:
The primary purpose of this study was to analyze effects that participating in sporting activities has on academic performance among students at Yaa Asantewaa Girls’ Senior High School. To dig out the main objective of the study, descriptive survey design was employed. The study used 45 respondents comprising of 25 student – athletes and 20 non-student – athletes. The purposive sampling and stratified random sampling technique were used to sample population of 455 students involved. The academic performance of sports participants is compared with those of non – participants in terms of their outcomes in the form of grades from mathematics. Data was obtained from the sample by the use of questionnaire which was self - administered. The questionnaire sought information on level of student’s participation in sports and importance of sports participation to students. Results revealed that participation in sporting activities is associated with higher grades among students. The analysis reinforces the idea that apart from their health benefits for participants, sporting activities lead to the attainment of the performance goals to which higher institutions aspire. The findings also implies that, mathematics teachers and other subject teachers should not fend off students from participating in sporting activities with the trepidation that participating in sports inflame academic performance. This study recommend that, educational programs about sports should be provided for students’ through the educational system to bring about positive academic performance.Keywords: physical activity, physical education, intra mural, extra mural
Procedia PDF Downloads 654135 Assessment of Marine Diversity on Rocky Shores of Triporti, Vlore, Albania
Authors: Ina Nasto, Denada Sota, Kerol Sacaj, Brunilda Veshaj, Hajdar Kicaj
Abstract:
Rocky shores are often used as models to describe the dynamics of biodiversity around the world, making them one of the most studied marine habitats and their communities. The variability in the number of species and the abundance of hard-bottom benthic animal communities on the coast of Triporti, north of the Bay of Vlora, Albania is described in relation to environmental variables using multivariate analysis. The purpose of this study is to monitor the species composition, quantitative characteristics, and seasonal variations of the benthic macroinvertebrate populations of the shallow rocky shores of the Triportit-Vlora area, as well as the assessment of the ecological condition of these populations. The rocky coast of Triport, with a length of 7 km, was divided into three sampling stations, with three transects each of 50m. The monitoring of benthic macroinvertebrates in these areas was carried out in two seasons, spring and summer (June and August 2021). In each station and sampling season, estimates of the total and average density for each species, the presence constant, and the assessment of biodiversity were calculated using the Shannon–Wiener and the Simpson index. The species composition, the quantitative characteristics of the populations, and the indicators mentioned above were analyzed in a comparative way, both between the seasons within one station and between the three stations with each other. Statistical processing of the data was carried out to analyze the changes between the seasons and between the sampling stations for the species composition, population density, as well as correlation between them. A total of 105 benthic macroinvertebrate taxa were found, dominated by Molluscs, Annelids, and Arthropods. The small density of species and the low degree of stability of the macrozoobenthic community are indicators of the poor ecological condition and environmental impact in the studied areas. Algal cover, the diversity of coastal microhabitats, and the degree of coastal exposure to waves play an important role in the characteristics of macrozoobenthos populations in the studied areas. Also, the rocky shores are of special interest because, in the infralittoral of these areas, there are dense kelp forests with Gongolaria barbata, Ericaria crinita as well as fragmented areas with Posidonia oceanica that reach the coast, priority habitats of special conservation importance in the Mediterranean.Keywords: Macrozoobenthic communities, Shannon–Wiener, Triporti, Vlore, rocky shore
Procedia PDF Downloads 994134 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: cloud computing systems, multicore systems, parallel Delaunay triangulation, parallel surface modeling and generation
Procedia PDF Downloads 2074133 An Explanatory Study into the Information-Seeking Behaviour of Egyptian Beggars
Authors: Essam Mansour
Abstract:
The key purpose of this study is to provide first-hand information about beggars in Egypt, especially from the perspective of their information seeking behaviour including their information needs. The researcher tries to investigate the information-seeking behaviour of Egyptian beggars with regard to their thoughts, perceptions, motivations, attitudes, habits, preferences as well as challenges that may impede their use of information. The research methods used were an adapted form of snowball sampling of a heterogeneous demographic group of participants in the beggary activity in Egypt. This sampling was used to select focus groups to explore a range of relevant issues. Data on the demographic characteristics of the Egyptian beggars showed that they tend to be men, mostly with no formal education, with an average age around 30s, labeled as low-income persons, mostly single and mostly Muslims. A large number of Egyptian beggars were seeking for information to meet their basic needs as well as their daily needs, although some of them were not able to identify their information needs clearly. The information-seeking behaviour profile of a very large number of Egyptian beggars indicated a preference for informal sources of information over formal ones to solve different problems and meet the challenges they face during their beggary activity depending on assistive devices, such as mobile phones. The high degree of illiteracy and the lack of awareness about the basic rights of information as well as information needs were the most important problems Egyptian beggars face during accessing information. The study recommended further research to be conducted about the role of the library in the education of beggars. It also recommended that beggars’ awareness about their information rights should be promoted through educational programs that help them value the role of information in their life.Keywords: user studies, information-seeking behaviour, information needs, information sources, beggars, Egypt
Procedia PDF Downloads 3194132 Women Empowerment in Cassava Production: A Case Study of Southwest Nigeria
Authors: Adepoju A. A., Olapade-Ogunwole F., Ganiyu M. O.
Abstract:
This study examined women's empowerment in cassava production in southwest Nigeria. The contributions of the five domains namely decision about agricultural production, decision-making power over productive resources, control of the use of income, leadership and time allocation to women disempowerment, profiled the women based on their socio-economics features and determined factors influencing women's disempowerment. Primary data were collected from the women farmers and processors through the use of structured questionnaires. Purposive sampling was used to select the LGAs and villages based on a large number of cassava farmers and processors, while cluster sampling was used to select 360 respondents in the study area. Descriptive statistics such as bar charts and percentages, Women Empowerment in Agriculture (WEAI), and the Logit regression model were used to analyze the data collected. The results revealed that 63.88% of the women were disempowered. Lack of decision-making power over productive resources; 36.47% and leadership skills; 33.26% contributed mostly to the disempowerment of the women. About 85% of the married women were disempowered, while 76.92% of the women who participated in social group activities were more empowered than their disempowered counterparts. The findings showed that women with more years of processing experience have the probability of being disempowered while those who engage in farming as a primary livelihood activity, and participate in social groups among others have the tendency to be empowered. In view of this, it was recommended that women should be encouraged to farm and contribute to social group activities.Keywords: cassava, production, empowerment, southwest, Nigeria
Procedia PDF Downloads 594131 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications
Authors: António J. Gano, Carmen Rangel
Abstract:
Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS
Procedia PDF Downloads 1034130 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 1324129 Soil-Vegetation Relationship in the Watersheds of the Tonga and OubeïRa Lakes, Algeria
Authors: Nafaa Zaafour
Abstract:
Located at the north eastern of Algeria, the National Park of El-Kala (PNEK) is a set of landscapes whose bioclimatic stages of vegetation extend from sub-humid to humid. In order to know the soil occupation in this complex, an initiated ecological soil cartography using a stratified sampling plan of vegetation had made, the study area occupies two-thirds of the northern National Park of El Kala, it has been divided into 380 plots of 1km2 of which, 76 were the subject of a detailed floristic inventory and sampling of soils. The inventory of vegetation carried out on different sites has allowed identifying several plant groups that share the soil cover with the following distribution: The group of cork oak, this formation occupies the biggest part of the area, it develops mainly on Incepttisols, Alfisols and Mollisols; The group of kermes oak, occupies a large area, it grows on Mollisols and Alfisols; The group of maritime pine, it occupies the same soils as the Kermes Oak; The group of Mirbeck oak, installed on Regosols, it is located in the Eastern part, on the Algerian-Tunisian border; The group of eucalyptus, it grows mainly on Inceptisols, Mollisols of, and Vertisols; The group of wetland, it grows along the banks of lakes and rivers, which primarily develops on Histosols soil Mollisols and Vertisols; The cultures, distributed mainly around the lakes occupy several soil types on Histosols, the Inceptisols, Mollisols of, and Vertisols. This great diversity of vegetation is linked not only to the soil variability but also to climate, hydrological and geological variability.Keywords: Algeria, cartography, soil, vegetation
Procedia PDF Downloads 3834128 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems
Authors: Riadh Zorgati, Thomas Triboulet
Abstract:
In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix
Procedia PDF Downloads 1374127 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission
Procedia PDF Downloads 1974126 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 964125 Smartphones as a Tool of Mobile Journalism in Saudi Arabia
Authors: Ahmed Deen
Abstract:
The introduction of the mobile devices which were equipped with internet access and a camera, as well as the messaging services, has become a major inspiration for the use of the mobile devices in the growth in the reporting of news. Mobile journalism (MOJO) was a creation of modern technology, especially the use of mobile technology for video journalism purposes. MOJO, thus, is the process by which information is collected and disseminated to society, through the use of mobile technology, and even the use of the tablets. This paper seeks to better understand the ethics of Saudi mobile journalists towards news coverage. Also, this study aims to explore the relationship between minimizing harms and truth-seeking efforts among Saudi mobile journalists. Three main ethics were targeted in this study, which are seek truth and report it, minimize harm, and being accountable. Diffusion of innovation theory applied to reach this study’s goals. The non- probability sampling approach, ‘Snowball Sampling’ was used to target 124 survey participants, an online survey via SurveyMonkey that was distributed through social media platforms as a web link. The code of ethics of the Society of Professional Journalists has applied as a scale in this study. This study found that the relationship between minimizing harm and truth-seeking efforts is significantly moderate among Saudi mobile journalists. Also, it is found that the level journalistic experiences and using smartphones to cover news are weakly and negatively related to the perceptions of mobile journalism among Saudi journalists, while Saudi journalists who use their smartphone to cover the news between 1-3 years, were the majority of participants (55 participants by 51.4%).Keywords: mobile journalism, Saudi journalism, smartphone, Saudi Arabia
Procedia PDF Downloads 1774124 TimeTune: Personalized Study Plans Generation with Google Calendar Integration
Authors: Chevon Fernando, Banuka Athuraliya
Abstract:
The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.Keywords: personalized learning, study planner, time management, calendar integration
Procedia PDF Downloads 494123 The Difficulties Witnessed by People with Intellectual Disability in Transition to Work in Saudi Arabia
Authors: Adel S. Alanazi
Abstract:
The transition of a student with a disability from school to work is the most crucial phase while moving from the stage of adolescence into early adulthood. In this process, young individuals face various difficulties and challenges in order to accomplish the next venture of life successfully. In this respect, this paper aims to examine the challenges encountered by the individuals with intellectual disabilities in transition to work in Saudi Arabia. For this purpose, this study has undertaken a qualitative research-based methodology; wherein interpretivist philosophy has been followed along with inductive approach and exploratory research design. The data for the research has been gathered with the help of semi-structured interviews, whose findings are analysed with the help of thematic analysis. Semi-structured interviews were conducted with parents of persons with intellectual disabilities, officials, supervisors and specialists of two vocational rehabilitation centres providing training to intellectually disabled students, in addition to that, directors of companies and websites in hiring those individuals. The total number of respondents for the interview was 15. The purposive sampling method was used to select the respondents for the interview. This sampling method is a non-probability sampling method which draws respondents from a known population and allows flexibility and suitability in selecting the participants for the study. The findings gathered from the interview revealed that the lack of awareness among their parents regarding the rights of their children who are intellectually disabled; the lack of adequate communication and coordination between various entities; concerns regarding their training and subsequent employment are the key difficulties experienced by the individuals with intellectual disabilities. Training in programmes such as bookbinding, carpentry, computing, agriculture, electricity and telephone exchange operations were involved as key training programmes. The findings of this study also revealed that information technology and media were playing a significant role in smoothing the transition to employment of individuals with intellectual disabilities. Furthermore, religious and cultural attitudes have been identified to be restricted for people with such disabilities in seeking advantages from job opportunities. On the basis of these findings, it can be implied that the information gathered through this study will serve to be highly beneficial for Saudi Arabian schools/ rehabilitation centres for individuals with intellectual disability to facilitate them in overcoming the problems they encounter during the transition to work.Keywords: intellectual disability, transition services, rehabilitation centre, employment
Procedia PDF Downloads 1604122 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 184121 Initiative Strategies on How to Increase Value Add of the Recycling Business
Authors: Yananda Siraphatthada
Abstract:
The current study was the succession of a previous study on value added of recycling business management. Its aims are to 1) explore conditions on how to increasing value add of Thai recycling business, and 2) exam the implementation of the 3-staged plan (short, medium, and long term), suggested by the former study, to increase value added of the recycling business as immediate mechanisms to accelerate government operation. Quantitative and qualitative methods were utilized in this research. A qualitative research consisted of in-depth interviews and focus group discussions. Responses were obtained from owners of the waste separation plants, and recycle shops, as well as officers in relevant governmental agencies. They were randomly selected via Quota Sampling. Data was analyzed via content analysis. The sample used for quantitative method consisted of 1,274 licensed recycling operators in eight provinces. The operators were randomly stratified via sampling method. Data were analyzed via descriptive statistics frequency, percentage, average (mean), and standard deviation. The study recommended three-staged plan: short, medium, and long terms. The plan included the development of logistics, the provision of quality market/plants, the amendment of recycling rules/regulation, the restructuring recycling business, the establishment of green-purchasing recycling center, support for the campaigns run by the International Green Purchasing Network (IGPN), conferences/workshops as a public forum to share insights among experts/concern people.Keywords: strategies, value added, recycle, business
Procedia PDF Downloads 245