Search results for: proline accumulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 971

Search results for: proline accumulation

131 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
130 Adaptive Environmental Control System Strategy for Cabin Air Quality in Commercial Aircrafts

Authors: Paolo Grasso, Sai Kalyan Yelike, Federico Benzi, Mathieu Le Cam

Abstract:

The cabin air quality (CAQ) in commercial aircraft is of prime interest, especially in the context of the COVID-19 pandemic. Current Environmental Control Systems (ECS) rely on a prescribed fresh airflow per passenger to dilute contaminants. An adaptive ECS strategy is proposed, leveraging air sensing and filtration technologies to ensure a better CAQ. This paper investigates the CAQ level achieved in commercial aircraft’s cabin during various flight scenarios. The modeling and simulation analysis is performed in a Modelica-based environment describing the dynamic behavior of the system. The model includes the following three main systems: cabin, recirculation loop and air-conditioning pack. The cabin model evaluates the thermo-hygrometric conditions and the air quality in the cabin depending on the number of passengers and crew members, the outdoor conditions and the conditions of the air supplied to the cabin. The recirculation loop includes models of the recirculation fan, ordinary and novel filtration technology, mixing chamber and outflow valve. The air-conditioning pack includes models of heat exchangers and turbomachinery needed to condition the hot pressurized air bled from the engine, as well as selected contaminants originated from the outside or bled from the engine. Different ventilation control strategies are modeled and simulated. Currently, a limited understanding of contaminant concentrations in the cabin and the lack of standardized and systematic methods to collect and record data constitute a challenge in establishing a causal relationship between CAQ and passengers' comfort. As a result, contaminants are neither measured nor filtered during flight, and the current sub-optimal way to avoid their accumulation is their dilution with the fresh air flow. However, the use of a prescribed amount of fresh air comes with a cost, making the ECS the most energy-demanding non-propulsive system within an aircraft. In such a context, this study shows that an ECS based on a reduced and adaptive fresh air flow, and relying on air sensing and filtration technologies, provides promising results in terms of CAQ control. The comparative simulation results demonstrate that the proposed adaptive ECS brings substantial improvements to the CAQ in terms of both controlling the asymptotic values of the concentration of the contaminant and in mitigating hazardous scenarios, such as fume events. Original architectures allowing for adaptive control of the inlet air flow rate based on monitored CAQ will change the requirements for filtration systems and redefine the ECS operation.

Keywords: cabin air quality, commercial aircraft, environmental control system, ventilation

Procedia PDF Downloads 101
129 Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers

Authors: Anna Wolowicz, Katarzyna Staszak, Zbigniew Hubicki

Abstract:

Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L).

Keywords: anionic surfactant, heavy metal ions, ion exchanger, removal

Procedia PDF Downloads 142
128 Fluoride Contamination and Effects on Crops in North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination in water and its subsequent impact on agricultural practices is a growing concern in various regions worldwide, including North 24 Parganas, West Bengal, India. This study aimed to investigate the extent of fluoride contamination in the region's water sources and evaluate its effects on crop production and quality. A comprehensive survey of water sources, including wells, ponds, and rivers, was conducted to assess the fluoride levels in North 24 Parganas. Water samples were collected and analyzed using standard methods, and the fluoride concentration was determined. The findings revealed significant fluoride contamination in the water sources, surpassing the permissible limits recommended by national and international standards. To assess the effects of fluoride contamination on crops, field experiments were carried out in selected agricultural areas. Various crops commonly cultivated in the region, such as paddy, wheat, vegetables, and fruits, were examined for their growth, yield, and nutritional quality parameters. Additionally, soil samples were collected from the study sites to analyse the fluoride levels and their potential impact on soil health. The results demonstrated the adverse effects of fluoride contamination on crop growth and yield. Reduced plant height, stunted root development, decreased biomass accumulation, and diminished crop productivity were observed in fluoride-affected areas compared to uncontaminated control sites. Furthermore, the nutritional composition of crops, including micronutrients and mineral content, was significantly altered under high fluoride exposure, leading to potential health risks for consumers. The study also assessed the impact of fluoride on soil quality and found a negative correlation between fluoride concentration and soil health indicators, such as pH, organic matter content, and nutrient availability. These findings emphasize the need for sustainable soil management practices to mitigate the harmful effects of fluoride contamination and maintain agricultural productivity. Overall, this study highlights the alarming issue of fluoride contamination in water sources and its detrimental effects on crop production and quality in North 24 Parganas, West Bengal, India. The findings underscore the urgency for implementing appropriate water treatment measures, promoting awareness among farmers and local communities, and adopting sustainable agricultural practices to mitigate fluoride contamination and safeguard the region's agricultural ecosystem.

Keywords: agricultural ecosystem, water treatment, sustainable agricultural, fluoride contamination

Procedia PDF Downloads 79
127 Raman Tweezers Spectroscopy Study of Size Dependent Silver Nanoparticles Toxicity on Erythrocytes

Authors: Surekha Barkur, Aseefhali Bankapur, Santhosh Chidangil

Abstract:

Raman Tweezers technique has become prevalent in single cell studies. This technique combines Raman spectroscopy which gives information about molecular vibrations, with optical tweezers which use a tightly focused laser beam for trapping the single cells. Thus Raman Tweezers enabled researchers analyze single cells and explore different applications. The applications of Raman Tweezers include studying blood cells, monitoring blood-related disorders, silver nanoparticle-induced stress, etc. There is increased interest in the toxic effect of nanoparticles with an increase in the various applications of nanoparticles. The interaction of these nanoparticles with the cells may vary with their size. We have studied the effect of silver nanoparticles of sizes 10nm, 40nm, and 100nm on erythrocytes using Raman Tweezers technique. Our aim was to investigate the size dependence of the nanoparticle effect on RBCs. We used 785nm laser (Starbright Diode Laser, Torsana Laser Tech, Denmark) for both trapping and Raman spectroscopic studies. 100 x oil immersion objectives with high numerical aperture (NA 1.3) is used to focus the laser beam into a sample cell. The back-scattered light is collected using the same microscope objective and focused into the spectrometer (Horiba Jobin Vyon iHR320 with 1200grooves/mm grating blazed at 750nm). Liquid nitrogen cooled CCD (Symphony CCD-1024x256-OPEN-1LS) was used for signal detection. Blood was drawn from healthy volunteers in vacutainer tubes and centrifuged to separate the blood components. 1.5 ml of silver nanoparticles was washed twice with distilled water leaving 0.1 ml silver nanoparticles in the bottom of the vial. The concentration of silver nanoparticles is 0.02mg/ml so the 0.03mg of nanoparticles will be present in the 0.1 ml nanoparticles obtained. The 25 ul of RBCs were diluted in 2 ml of PBS solution and then treated with 50 ul (0.015mg) of nanoparticles and incubated in CO2 incubator. Raman spectroscopic measurements were done after 24 hours and 48 hours of incubation. All the spectra were recorded with 10mW laser power (785nm diode laser), 60s of accumulation time and 2 accumulations. Major changes were observed in the peaks 565 cm-1, 1211 cm-1, 1224 cm-1, 1371 cm-1, 1638 cm-1. A decrease in intensity of 565 cm-1, increase in 1211 cm-1 with a reduction in 1224 cm-1, increase in intensity of 1371 cm-1 also peak disappearing at 1635 cm-1 indicates deoxygenation of hemoglobin. Nanoparticles with higher size were showing maximum spectral changes. Lesser changes observed in case of 10nm nanoparticle-treated erythrocyte spectra.

Keywords: erythrocytes, nanoparticle-induced toxicity, Raman tweezers, silver nanoparticles

Procedia PDF Downloads 291
126 A Novel Chicken W Chromosome Specific Tandem Repeat

Authors: Alsu F. Saifitdinova, Alexey S. Komissarov, Svetlana A. Galkina, Elena I. Koshel, Maria M. Kulak, Stephen J. O'Brien, Elena R. Gaginskaya

Abstract:

The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used.

Keywords: birds, lampbrush chromosomes, sex chromosomes, tandem repeats

Procedia PDF Downloads 389
125 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor

Procedia PDF Downloads 148
124 Sequential and Combinatorial Pre-Treatment Strategy of Lignocellulose for the Enhanced Enzymatic Hydrolysis of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Waste from the food-processing industry is produced in large amount and contains high levels of lignocellulose. Due to continuous accumulation throughout the year in large quantities, it creates a major environmental problem worldwide. The chemical composition of these wastes (up to 75% of its composition is contributed by polysaccharide) makes it inexpensive raw material for the production of value-added products such as biofuel, bio-solvents, nanocrystalline cellulose and enzymes. In order to use lignocellulose as the raw material for the microbial fermentation, the substrate is subjected to enzymatic treatment, which leads to the release of reducing sugars such as glucose and xylose. However, the inherent properties of lignocellulose such as presence of lignin, pectin, acetyl groups and the presence of crystalline cellulose contribute to recalcitrance. This leads to poor sugar yields upon enzymatic hydrolysis of lignocellulose. A pre-treatment method is generally applied before enzymatic treatment of lignocellulose that essentially removes recalcitrant components in biomass through structural breakdown. Present study is carried out to find out the best pre-treatment method for the maximum liberation of reducing sugars from spent coffee waste (SPW). SPW was subjected to a range of physical, chemical and physico-chemical pre-treatment followed by a sequential, combinatorial pre-treatment strategy is also applied on to attain maximum sugar yield by combining two or more pre-treatments. All the pre-treated samples were analysed for total reducing sugar followed by identification and quantification of individual sugar by HPLC coupled with RI detector. Besides, generation of any inhibitory compounds such furfural, hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity is also monitored. Results showed that ultrasound treatment (31.06 mg/L) proved to be the best pre-treatment method based on total reducing content followed by dilute acid hydrolysis (10.03 mg/L) while galactose was found to be the major monosaccharide present in the pre-treated SPW. Finally, the results obtained from the study were used to design a sequential lignocellulose pre-treatment protocol to decrease the formation of enzyme inhibitors and increase sugar yield on enzymatic hydrolysis by employing cellulase-hemicellulase consortium. Sequential, combinatorial treatment was found better in terms of total reducing yield and low content of the inhibitory compounds formation, which could be due to the fact that this mode of pre-treatment combines several mild treatment methods rather than formulating a single one. It eliminates the need for a detoxification step and potential application in the valorisation of lignocellulosic food waste.

Keywords: lignocellulose, enzymatic hydrolysis, pre-treatment, ultrasound

Procedia PDF Downloads 366
123 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 201
122 Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Capacity of in vitro Propagated Hyssop, Hyssopus officinalis L.

Authors: Maria P. Geneva, Ira V. Stancheva, Marieta G. Hristozkova, Roumiana D. Vasilevska-Ivanova, Mariana T. Sichanova, Janet R. Mincheva

Abstract:

Hyssopus officinalis L., Lamiaceae, commonly called hyssop, is an aromatic, semi-evergreen, woody-based, shrubby perennial plant. Hyssop is a good expectorant and antiviral herb commonly used to treat respiratory conditions such as influenza, sinus infections, colds, and bronchitis. Most of its medicinal properties are attributed to the essential oil of hyssop. The study was conducted to evaluate the influence of inoculation with arbuscular mycorrhizal fungi of in vitro propagated hyssop plants on the: activities of antioxidant enzymes superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase; accumulation of non-enzymatic antioxidants total phenols and flavonoid, water-soluble soluble antioxidant metabolites expressed as ascorbic acid; the antioxidant potential of hyssop methanol extracts assessed by two common methods: free radical scavenging activity using free stable radical (2,2-diphenyl-1-picrylhydrazyl, DPPH• and ferric reducing antioxidant power FRAP in flowers and leaves. The successfully adapted to field conditions in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). It was established that the activities of enzymes with antioxidant capacity (superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase) were significantly higher in leaves than in flowers in both control and mycorrhized plants. In flowers and leaves of inoculated plants, the antioxidant enzymes activity were lower than in non-inoculated plants, only in SOD activity, there was no difference. The content of low molecular metabolites with antioxidant capacity as total phenols, total flavonoids, and water soluble antioxidants was higher in inoculated plants. There were no significant differences between control and inoculated plants both for FRAP and DPPH antioxidant activity. According to plant essential oil content, there was no difference between non-inoculated and inoculated plants. Based on our results we could suggest that antioxidant capacity of in vitro propagated hyssop plant under conditions of cultivation is determined by the phenolic compounds-total phenols and flavonoids as well as by the levels of water-soluble metabolites with antioxidant potential. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.

Keywords: antioxidant enzymes, antioxidant metabolites, arbuscular mycorrhizal fungi, Hyssopus officinalis L.

Procedia PDF Downloads 326
121 Value Adding of Waste Biomass of Capsicum and Chilli Crops for Medical and Health Supplement Industries

Authors: Mursleen Yasin, Sunil Panchal, Michelle Mak, Zhonghua Chen

Abstract:

“The use of agricultural and horticultural waste to obtain beneficial products. Thus reduce its environmental impact and help the general population.” Every year 20 billion dollars of food is wasted in the world. All the energy, resources, nutrients and metabolites are lost to the landfills as well. On farm production losses are a main issue in agriculture. Almost 25% vegetables never leave the farm because they are not considered perfect for supermarkets and treated as waste material along with the rest of the plant parts. For capsicums, this waste is 56% of the total crop. Capsicum genus is enriched with a group of compounds called capsaicinoids which are a source of spiciness of these fruits. Capsaicin and dihydrocapsaicin are the major members comprising almost 90% of this group. The major production and accumulation site is the non-edible part of fruit i.e., placenta. Other parts of the plant, like stem, leaves, pericarp and seeds, also contain these pungent compounds. Capsaicinoids are enriched with properties like analgesic, antioxidants, anti-inflammatory, antibacterial, anti-virulence anti-carcinogenic, chemo preventive, chemotherapeutic, antidiabetic etc. They are also effective in treating problems related to gastrointestinal tract, lowering cholesterol and triglycerides in obesity. The aim of the study is to develop a standardised technique for capsaicinoids extraction and to identify better nutrient treatment for fruit and capsaicinoids yield. For research 3 capsicum and 2 chilli varieties were grown in a high-tech glass house facility in Sydney, Australia. Plants were treated with three levels of nutrient treatments i.e., EC 1.8, EC 2.8 and EC 3.8 in order to check its effect on fruit yield and capsaicinoids concentration. Solvent extraction procedure is used with 75% ethanol to extract these secondary metabolites. Physiological, post-harvest and waste biomass measurement and metabolomic analysis are also performed. The results showed that EC 2.8 gave the better fruit yield of capsicums, and those fruits have the higher capsaicinoids concentration. For chillies, higher EC levels had better results than lower treatment. The UHPLC analysis is done to quantify the compounds, and a decrease in capsaicin concentration is observed with the crop maturation. The outcome of this project is a sustainable technique for extraction of capsaicinoids which can easily be adopted by farmers. In this way, farmers can help in value adding of waste by extracting and selling capsaicinoids to nutraceutical and pharmaceutical industries and also earn some secondary income from the 56% waste of capsicum crop.

Keywords: capsaicinoids, plant waste, capsicum, solvent extraction, waste biomass

Procedia PDF Downloads 79
120 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 242
119 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production

Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani

Abstract:

The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.

Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.

Procedia PDF Downloads 116
118 Gold Nano Particle as a Colorimetric Sensor of HbA0 Glycation Products

Authors: Ranjita Ghoshmoulick, Aswathi Madhavan, Subhavna Juneja, Prasenjit Sen, Jaydeep Bhattacharya

Abstract:

Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease where the blood sugar level goes up. One of the major consequence of this elevated blood sugar is the formation of AGE (Advance Glycation Endproducts), from a series of chemical or biochemical reactions. AGE are detrimental because it leads to severe pathogenic complications. They are a group of structurally diverse chemical compounds formed from nonenzymatic reactions between the free amino groups (-NH2) of proteins and carbonyl groups (>C=O) of reducing sugars. The reaction is known as Maillard Reaction. It starts with the formation of reversible schiff’s base linkage which after sometime rearranges itself to form Amadori Product along with dicarbonyl compounds. Amadori products are very unstable hence rearrangement goes on until stable products are formed. During the course of the reaction a lot of chemically unknown intermediates and reactive byproducts are formed that can be termed as Early Glycation Products. And when the reaction completes, structurally stable chemical compounds are formed which is termed as Advanced Glycation Endproducts. Though all glycation products have not been characterized well, some fluorescence compounds e.g pentosidine, Malondialdehyde (MDA) or carboxymethyllysine (CML) etc as AGE and α-dicarbonyls or oxoaldehydes such as 3-deoxyglucosone (3-DG) etc as the intermediates have been identified. In this work Gold NanoParticle (GNP) was used as an optical indicator of glycation products. To achieve faster glycation kinetics and high AGE accumulation, fructose was used instead of glucose. Hemoglobin A0 (HbA0) was fructosylated by in-vitro method. AGE formation was measured fluorimetrically by recording emission at 450nm upon excitation at 350nm. Thereafter this fructosylated HbA0 was fractionated by column chromatography. Fractionation separated the proteinaceous substance from the AGEs. Presence of protein part in the fractions was confirmed by measuring the intrinsic protein fluorescence and Bradford reaction. GNPs were synthesized using the templates of chromatographically separated fractions of fructosylated HbA0. Each fractions gave rise to GNPs of varying color, indicating the presence of distinct set of glycation products differing structurally and chemically. Clear solution appeared due to settling down of particles in some vials. The reactive groups of the intermediates kept the GNP formation mechanism on and did not lead to a stable particle formation till Day 10. Whereas SPR of GNP showed monotonous colour for the fractions collected in case of non fructosylated HbA0. Our findings accentuate the use of GNPs as a simple colorimetric sensing platform for the identification of intermediates of glycation reaction which could be implicated in the prognosis of the associated health risk due to T2DM and others.

Keywords: advance glycation endproducts, glycation, gold nano particle, sensor

Procedia PDF Downloads 304
117 White Clover Trifolium repens L. Genetic Diversity and Salt Tolerance in Urban Area of Riga

Authors: Dace Grauda, Gunta Cekstere, Inta Belogrudova, Andis Karlsons, Isaak Rashal

Abstract:

Trifolium repens L. (white or Dutch clover) is a perennial herb, belongs to legume family (Leguminosae Juss.), spread extensively by stolons and seeds. The species is cultivated worldwide and was naturalized in many countries in meadows, yards, gardens, along roads and streets etc., especially in temperate regions. It is widespread also in grasslands throughout Riga, the capital of Latvia. The goal of this study was to investigate genetic structure of white clover population in Riga and to evaluate influence of different salt concentration on plants. For this purpose universal retrotranspozone based IRAP (Inter-Retrotransposon Amplified Polymorphism) method was used. The plant material was collected in different regions of Riga and in several urban areas of Latvia. Plant DNA was isolated from in silicogel dried leaves of using 1% CTAB (cetyltrimet-ammonium bromide) buffer DNA extraction procedure. Genetic structure of city population and wild populations were compared. Soil salinization is an important issue associated with low water resources and highly urbanized areas in aride and semi-aride climate conditions, as well as de-icing salt application to prevent ice formation on roads in winter. The T. repens variety ‘Daile’ (form giganteum), one of the often used component of urban greeneries, was studied in this investigation. Plants were grown from seeds and cultivated in the light conditions (18-25 C, 16h/8h of day/night, light intensity 3000 lx) in plastic pots (200 ml), filled with commercial neutralized (pH 5.9 ± 0.3) peat substrate with mineral nutrients. To analyse the impact of increased soil salinity treatments with gradually rising NaCl (0; 20; 40; 60; 80; 100 mM) levels were arranged. Plants were watered when necessary with deionised water to provide optimum substrate moisture 60-70%. The experiment was terminated six weeks after establishment. For analysis of mineral nutrients, dry plant material (above ground part and roots) was used. Decrease of Na content can be significant under elevated salinity till 20 mM NaCl. High NaCl concentrations in the substrate increase Na, Cl, Cu, Fe, and Mn accumulation, but reduce S, Mg, K content in the plant above ground parts. Abiotic stresses generally changes the levels of DNA metilation. Several candidate gene for salt tolerance will be analysed for DNA metilation level using Pyromark-Q24 advanced.

Keywords: DNA metilation, IRAP, soil salinization, white clover

Procedia PDF Downloads 364
116 A Theragnostic Approach for Alzheimer’s Disease Focused on Phosphorylated Tau

Authors: Tomás Sobrino, Lara García-Varela, Marta Aramburu-Núñez, Mónica Castro, Noemí Gómez-Lado, Mariña Rodríguez-Arrizabalaga, Antía Custodia, Juan Manuel Pías-Peleteiro, José Manuel Aldrey, Daniel Romaus-Sanjurjo, Ángeles Almeida, Pablo Aguiar, Alberto Ouro

Abstract:

Introduction: Alzheimer’s disease (AD) and other tauopathies are primary causes of dementia, causing progressive cognitive deterioration that entails serious repercussions for the patients' performance of daily tasks. Currently, there is no effective approach for the early diagnosis and treatment of AD and tauopathies. This study suggests a theragnostic approach based on the importance of phosphorylated tau protein (p-Tau) in the early pathophysiological processes of AD. We have developed a novel theragnostic monoclonal antibody (mAb) to provide both diagnostic and therapeutic effects. Methods/Results: We have developed a p-Tau mAb, which was doped with deferoxamine for radiolabeling with Zirconium-89 (89Zr) for PET imaging, as well as fluorescence dies for immunofluorescence assays. The p-Tau mAb was evaluated in vitro for toxicity by MTT assay, LDH activity, propidium iodide/Annexin V assay, caspase-3, and mitochondrial membrane potential (MMP) assay in both mouse endothelial cell line (bEnd.3) and cortical primary neurons cell cultures. Importantly, non-toxic effects (up to concentrations of p-Tau mAb greater than 100 ug/mL) were detected. In vivo experiments in the tauopathy model mice (PS19) show that the 89Zr-pTau-mAb and 89Zr-Fragments-pTau-mAb are stable in circulation for up to 10 days without toxic effects. However, only less than 0.2% reached the brain, so further strategies have to be designed for crossing the Brain-Blood-Barrier (BBB). Moreover, an intraparenchymal treatment strategy was carried out. The PS19 mice were operated to implement osmotic pumps (Alzet 1004) at two different times, at 4 and 7 months, to stimulate the controlled release for one month each of the B6 antibody or the IgG1 control antibody. We demonstrated that B6-treated mice maintained their motor and memory abilities significantly compared with IgG1 treatment. In addition, we observed a significant reduction in p-Tau deposits in the brain. Conclusions /Discussion: A theragnostic pTau-mAb was developed. Moreover, we demonstrated that our p-Tau mAb recognizes very-early pathology forms of p-Tau by non-invasive techniques, such as PET. In addition, p-Tau mAb has non-toxic effects, both in vitro and in vivo. Although the p-Tau mAb is stable in circulation, only 0.2% achieve the brain. However, direct intraventricular treatment significantly reduces cognitive impairment in Alzheimer's animal models, as well as the accumulation of toxic p-Tau species.

Keywords: alzheimer's disease, theragnosis, tau, PET, immunotherapy, tauopathies

Procedia PDF Downloads 70
115 Bending the Consciousnesses: Uncovering Environmental Issues Through Circuit Bending

Authors: Enrico Dorigatti

Abstract:

The growing pile of hazardous e-waste produced especially by those developed and wealthy countries gets relentlessly bigger, composed of the EEDs (Electric and Electronic Device) that are often thrown away although still well functioning, mainly due to (programmed) obsolescence. As a consequence, e-waste has taken, over the last years, the shape of a frightful, uncontrollable, and unstoppable phenomenon, mainly fuelled by market policies aiming to maximize sales—and thus profits—at any cost. Against it, governments and organizations put some efforts in developing ambitious frameworks and policies aiming to regulate, in some cases, the whole lifecycle of EEDs—from the design to the recycling. Incidentally, however, such regulations sometimes make the disposal of the devices economically unprofitable, which often translates into growing illegal e-waste trafficking—an activity usually undertaken by criminal organizations. It seems that nothing, at least in the near future, can stop the phenomenon of e-waste production and accumulation. But while, from a practical standpoint, a solution seems hard to find, much can be done regarding people's education, which translates into informing and promoting good practices such as reusing and repurposing. This research argues that circuit bending—an activity rooted in neo-materialist philosophy and post-digital aesthetic, and based on repurposing EEDs into novel music instruments and sound generators—could have a great potential in this. In particular, it asserts that circuit bending could expose ecological, environmental, and social criticalities related to the current market policies and economic model. Not only thanks to its practical side (e.g., sourcing and repurposing devices) but also to the artistic one (e.g., employing bent instruments for ecological-aware installations, performances). Currently, relevant literature and debate lack interest and information about the ecological aspects and implications of the practical and artistic sides of circuit bending. This research, therefore, although still at an early stage, aims to fill in this gap by investigating, on the one side, the ecologic potential of circuit bending and, on the other side, its capacity of sensitizing people, through artistic practice, about e-waste-related issues. The methodology will articulate in three main steps. Firstly, field research will be undertaken—with the purpose of understanding where and how to source, in an ecologic and sustainable way, (discarded) EEDs for circuit bending. Secondly, artistic installations and performances will be organized—to sensitize the audience about environmental concerns through sound art and music derived from bent instruments. Data, such as audiences' feedback, will be collected at this stage. The last step will consist in realising workshops to spread an ecologically-aware circuit bending practice. Additionally, all the data and findings collected will be made available and disseminated as resources.

Keywords: circuit bending, ecology, sound art, sustainability

Procedia PDF Downloads 171
114 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 270
113 Metamorphosis of Caste: An Examination of the Transformation of Caste from a Material to Ideological Phenomenon in Sri Lanka

Authors: Pradeep Peiris, Hasini Lecamwasam

Abstract:

The fluid, ambiguous, and often elusive existence of caste among the Sinhalese in Sri Lanka has inspired many scholarly endeavours. Originally, Sinhalese caste was organized according to the occupational functions assigned to various groups in society. Hence cultivators came to be known as Goyigama, washers Dobi, drummers Berava, smiths Navandanna and so on. During pre-colonial times the specialized services of various groups were deployed to build water reservoirs, cultivate the land, and/or sustain the Buddhist order by material means. However, as to how and why caste prevails today in Sinhalese society when labour is in ideal terms free to move where it wants, or in other words, occupation is no longer strictly determined or restricted by birth, is a question worth exploring. Hence this paper explores how, and perhaps more interestingly why, when the nexus between traditional occupations and caste status is fast disappearing, caste itself has managed to survive and continues to be salient in politics in Sri Lanka. In answer to this larger question, the paper looks at caste from three perspectives: 1) Buddhism, whose ethical project provides a justification of social stratifications that transcends economic bases 2) Capitalism that has reactivated and reproduced archaic relations in a process of 'accumulation by subordination', not only by reinforcing the marginality of peripheral caste groups, but also by exploiting caste divisions to hinder any realization of class interests and 3) Democracy whose supposed equalizing effect expected through its ‘one man–one vote’ approach has been subverted precisely by itself, whereby the aggregate ultimately comes down to how many such votes each ‘group’ in society has. This study draws from field work carried out in Dedigama (in the District of Kegalle, Central Province) and Kelaniya (in the District of Colombo, Western Province) in Sri Lanka over three years. The choice of field locations was encouraged by the need to capture rural and urban dynamics related to caste since caste is more apparently manifest in rural areas whose material conditions partially warrant its prevalence, whereas in urban areas it exists mostly in the ideological terrain. In building its analysis, the study has employed a combination of objectivist and subjectivist approaches to capture the material and ideological existence of caste and caste politics in Sinhalese society. Therefore, methods such as in-depth interviews, observation, and collection of demographical and interpretive data from secondary sources were used for this study. The paper has been situated in a critical theoretical framework of social inquiry in an attempt to question dominant assumptions regarding such meta-labels as ‘Capitalism’ and ‘Democracy’, and also the supposed emancipatory function of religion (focusing on Buddhism).

Keywords: Buddhism, capitalism, caste, democracy, Sri Lanka

Procedia PDF Downloads 136
112 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley

Authors: Kali Prasad Sarma, Sanghita Dutta

Abstract:

Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.

Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals

Procedia PDF Downloads 288
111 Accumulated Gender-Diverse Co-signing Experience, Knowledge Sharing, and Audit Quality

Authors: Anxuan Xie, Chun-Chan Yu

Abstract:

Survey evidence provides support that auditors can gain professional knowledge not only from client firms but also from teammates they work with. Furthermore, given that knowledge is accumulated in nature, along with the reality that auditors today must work in an environment of increased diversity, whether the attributes of teammates will influence the effects of knowledge sharing and accumulation and ultimately influence an audit partner’s audit quality should be interesting research issues. We test whether the gender of co-signers will moderate the effect of a lead partner’s cooperative experiences on financial restatements. Furthermore, if the answer is “yes”, we further investigate the underlying reasons. We use data from Taiwan because, according to Taiwan’s law, engagement partners, who are basically two certificate public accountants from the same audit firm, are required to disclose (i.e., sign) their names in the audit report of public companies since 1983. Therefore, we can trace each engagement partner’s historic direct cooperative (co-signing) records and get large-sample data. We find that the benefits of knowledge sharing manifest primarily via co-signing audit reports with audit partners of different gender from the lead engagement partners, supporting the argument that in an audit setting, accumulated gender-diverse working relationship is positively associated with knowledge sharing, and therefore improve lead engagements’ audit quality. This study contributes to the extant literature in the following ways. First, we provide evidence that in the auditing setting, the experiences accumulated from cooperating with teammates of a different gender from the lead partner can improve audit quality. Given that most studies find evidence of negative effects of surface-level diversity on team performance, the results of this study support the prior literature that the association between diversity and knowledge sharing actually hinges on the context (e.g., organizational culture, task complexity) and “bridge” (a pre-existing commonality among team members that can smooth the process of diversity toward favorable results) among diversity team members. Second, this study also provides practical insights with respect to the audit firms’ policy of knowledge sharing and deployment of engagement partners. For example, for audit firms that appreciate the merits of knowledge sharing, the deployment of auditors of different gender within an audit team can help auditors accumulate audit-related knowledge, which will further benefit the future performance of those audit firms. Moreover, nowadays, client firms also attach importance to the diversity of their engagement partners. As their policy goals, lawmakers and regulators also continue to promote a gender-diverse working environment. The findings of this study indicate that for audit firms, gender diversity will not be just a means to cater to those groups. Third, for audit committees or other stakeholders, they can evaluate the quality of existing (or potential) lead partners by tracking their co-signing experiences, especially whether they have gender-diverse co-signing experiences.

Keywords: co-signing experiences, audit quality, knowledge sharing, gender diversity

Procedia PDF Downloads 84
110 Assessing the Impact of Frailty in Elderly Patients Undergoing Emergency Laparotomies in Singapore

Authors: Zhao Jiashen, Serene Goh, Jerry Goo, Anthony Li, Lim Woan Wui, Paul Drakeford, Chen Qing Yan

Abstract:

Introduction: Emergency laparotomy (EL) is one of the most common surgeries done in Singapore to treat acute abdominal pathologies. A significant proportion of these surgeries are performed in the geriatric population (65 years and older), who tend to have the highest postoperative morbidity, mortality, and highest utilization of intensive care resources. Frailty, the state of vulnerability to adverse outcomes from an accumulation of physiological deficits, has been shown to be associated with poorer outcomes after surgery and remains a strong driver of healthcare utilization and costs. To date, there is little understanding of the impact it has on emergency laparotomy outcomes. The objective of this study is to examine the impact of frailty on postoperative morbidity, mortality, and length of stay after EL. Methods: A retrospective study was conducted in two tertiary centres in Singapore, Tan Tock Seng Hospital and Khoo Teck Puat Hospital the period from January to December 2019. Patients aged 65 years and above who underwent emergency laparotomy for intestinal obstruction, perforated viscus, bowel ischaemia, adhesiolysis, gastrointestinal bleed, or another suspected acute abdomen were included. Laparotomies performed for trauma, cholecystectomy, appendectomy, vascular surgery, and non-GI surgery were excluded. The Clinical Frailty Score (CFS) developed by the Canadian Study of Health and Aging (CSHA) was used. A score of 1 to 4 was defined as non-frail and 5 to 7 as frail. We compared the clinical outcomes of elderly patients in the frail and non-frail groups. Results: There were 233 elderly patients who underwent EL during the study period. Up to 26.2% of patients were frail. Patients who were frail (CFS 5-9) tend to be older, 79 ± 7 vs 79 ± 5 years of age, p <0.01. Gender distribution was equal in both groups. Indication for emergency laparotomies, time from diagnosis to surgery, and presence of consultant surgeons and anaesthetists in the operating theatre were comparable (p>0.05). Patients in the frail group were more likely to receive postoperative geriatric assessment than in the non-frail group, 49.2% vs. 27.9% (p<0.01). The postoperative complications were comparable (p>0.05). The length of stay in the critical care unit was longer for the frail patients, 2 (IQR 1-6.5) versus 1 (IQR 0-4) days, p<0.01. Frailty was found to be an independent predictor of 90-day mortality but not age, OR 2.9 (1.1-7.4), p=0.03. Conclusion: Up to one-fourth of the elderly who underwent EL were frail. Patients who were frail were associated with a longer length of stay in the critical care unit and a 90-day mortality rate of more than three times that of their non-frail counterparts. PPOSSUM was a better predictor of 90-day mortality in the non-frail group than in the frail group. As frailty scoring was a significant predictor of 90-day mortality, its integration into acute surgical units to facilitate shared decision-making and discharge planning should be considered.

Keywords: frailty elderly, emergency, laparotomy

Procedia PDF Downloads 144
109 A Brazilian Study Applied to the Regulatory Environmental Issues of Nanomaterials

Authors: Luciana S. Almeida

Abstract:

Nanotechnology has revolutionized the world of science and technology bringing great expectations due to its great potential of application in the most varied industrial sectors. The same characteristics that make nanoparticles interesting from the point of view of the technological application, these may be undesirable when released into the environment. The small size of nanoparticles facilitates their diffusion and transport in the atmosphere, water, and soil and facilitates the entry and accumulation of nanoparticles in living cells. The main objective of this study is to evaluate the environmental regulatory process of nanomaterials in the Brazilian scenario. Three specific objectives were outlined. The first is to carry out a global scientometric study, in a research platform, with the purpose of identifying the main lines of study of nanomaterials in the environmental area. The second is to verify how environmental agencies in other countries have been working on this issue by means of a bibliographic review. And the third is to carry out an assessment of the Brazilian Nanotechnology Draft Law 6741/2013 with the state environmental agencies. This last one has the aim of identifying the knowledge of the subject by the environmental agencies and necessary resources available in the country for the implementation of the Policy. A questionnaire will be used as a tool for this evaluation to identify the operational elements and build indicators through the Environment of Evaluation Application, a computational application developed for the development of questionnaires. At the end will be verified the need to propose changes in the Draft Law of the National Nanotechnology Policy. Initial studies, in relation to the first specific objective, have already identified that Brazil stands out in the production of scientific publications in the area of nanotechnology, although the minority is in studies focused on environmental impact studies. Regarding the general panorama of other countries, some findings have also been raised. The United States has included the nanoform of the substances in an existing program in the EPA (Environmental Protection Agency), the TSCA (Toxic Substances Control Act). The European Union issued a draft of a document amending Regulation 1907/2006 of the European Parliament and Council to cover the nanoform of substances. Both programs are based on the study and identification of environmental risks associated with nanomaterials taking into consideration the product life cycle. In relation to Brazil, regarding the third specific objective, it is notable that the country does not have any regulations applicable to nanostructures, although there is a Draft Law in progress. In this document, it is possible to identify some requirements related to the environment, such as environmental inspection and licensing; industrial waste management; notification of accidents and application of sanctions. However, it is not known if these requirements are sufficient for the prevention of environmental impacts and if national environmental agencies will know how to apply them correctly. This study intends to serve as a basis for future actions regarding environmental management applied to the use of nanotechnology in Brazil.

Keywords: environment; management; nanotecnology; politics

Procedia PDF Downloads 122
108 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 42
107 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India

Authors: Priyanka Mondal, Santosh K. Sarkar

Abstract:

The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.

Keywords: pollution assessment, sediment contamination, sediment quality, trace elements

Procedia PDF Downloads 257
106 ATR-IR Study of the Mechanism of Aluminum Chloride Induced Alzheimer Disease - Curative and Protective Effect of Lepidium sativum Water Extract on Hippocampus Rats Brain Tissue

Authors: Maha J. Balgoon, Gehan A. Raouf, Safaa Y. Qusti, Soad S. Ali

Abstract:

The main cause of Alzheimer disease (AD) was believed to be mainly due to the accumulation of free radicals owing to oxidative stress (OS) in brain tissue. The mechanism of the neurotoxicity of Aluminum chloride (AlCl3) induced AD in hippocampus Albino wister rat brain tissue, the curative & the protective effects of Lipidium sativum group (LS) water extract were assessed after 8 weeks by attenuated total reflection spectroscopy ATR-IR and histologically by light microscope. ATR-IR results revealed that the membrane phospholipid undergo free radical attacks, mediated by AlCl3, primary affects the polyunsaturated fatty acids indicated by the increased of the olefinic -C=CH sub-band area around 3012 cm-1 from the curve fitting analysis. The narrowing in the half band width(HBW) of the sνCH2 sub-band around 2852 cm-1 due to Al intoxication indicates the presence of trans form fatty acids rather than gauch rotomer. The degradation of hydrocarbon chain to shorter chain length, increasing in membrane fluidity, disorder and decreasing in lipid polarity in AlCl3 group were indicated by the detected changes in certain calculated area ratios compared to the control. Administration of LS was greatly improved these parameters compared to the AlCl3 group. Al influences the Aβ aggregation and plaque formation, which in turn interferes to and disrupts the membrane structure. The results also showed a marked increase in the β-parallel and antiparallel structure, that characterize the Aβ formation in Al-induced AD hippocampal brain tissue, indicated by the detected increase in both amide I sub-bands around 1674, 1692 cm-1. This drastic increase in Aβ formation was greatly reduced in the curative and protective groups compared to the AlCl3 group and approaches nearly the control values. These results were supported too by the light microscope. AlCl3 group showed significant marked degenerative changes in hippocampal neurons. Most cells appeared small, shrieked and deformed. Interestingly, the administration of LS in curative and protective groups markedly decreases the amount of degenerated cells compared to the non-treated group. Also the intensity of congo red stained cells was decreased. Hippocampal neurons looked more/or less similar to those of control. This study showed a promising therapeutic effect of Lipidium sativum group (LS) on AD rat model that seriously overcome the signs of oxidative stress on membrane lipid and restore the protein misfolding.

Keywords: aluminum chloride, alzheimer disease, ATR-IR, Lipidium sativum

Procedia PDF Downloads 366
105 Efficacy Testing of a Product in Reducing Facial Hyperpigmentation and Photoaging after a 12-Week Use

Authors: Nalini Kaul, Barrie Drewitt, Elsie Kohoot

Abstract:

Hyperpigmentation is the third most common pigmentary disorder where dermatologic treatment is sought. It affects all ages resulting in skin darkening because of melanin accumulation. An uneven skin tone because of either exposure to the sun (solar lentigos/age spots/sun spots or skin disruption following acne, or rashes (post-inflammatory hyperpigmentation -PIH) or hormonal changes (melasma) can lead to significant psychosocial impairment. Dyschromia is a result of various alterations in biochemical processes regulating melanogenesis. Treatments include the daily use of sunscreen with lightening, brightening, and exfoliating products. Depigmentation is achieved by various depigmenting agents: common examples are hydroquinone, arbutin, azelaic acid, aloesin, mulberry, licorice extracts, kojic acid, niacinamide, ellagic acid, arbutin, green tea, turmeric, soy, ascorbic acid, and tranexamic acid. These agents affect pigmentation by interfering with mechanisms before, during, and after melanin synthesis. While immediate correction is much sought after, patience and diligence are key. Our objective was to assess the effects of a facial product with pigmentation treatment and UV protection in 35 healthy F (35-65y), meeting the study criteria. Subjects with mild to moderate hyperpigmentation and fine lines with no use of skin-lightening products in the last six months or any dermatological procedures in the last twelve months before the study started were included. Efficacy parameters included expert clinical grading for hyperpigmentation, radiance, skin tone & smoothness, fine lines, and wrinkles bioinstrumentation (Corneometer®, Colorimeter®), digital photography and imaging (Visia-CR®), and self-assessment questionnaires. Safety included grading for erythema, edema, dryness & peeling and self-assessments for itching, stinging, tingling, and burning. Our results showed statistically significant improvement in clinical grading scores, bioinstrumentation, and digital photos for hyperpigmentation-brown spots, fine lines/wrinkles, skin tone, radiance, pores, skin smoothness, and overall appearance compared to baseline. The product was also well-tolerated and liked by subjects. Conclusion: Facial hyperpigmentation is of great concern, and treatment strategies are increasingly sought. Clinical trials with both subjective and objective assessments, imaging analyses, and self-perception are essential to distinguish evidence-based products. The multifunctional cosmetic product tested in this clinical study showed efficacy, tolerability, and subject satisfaction in reducing hyperpigmentation and global photoaging.

Keywords: hyperpigmentation; photoaging, clinical testing, expert visual evaluations, bio-instruments

Procedia PDF Downloads 77
104 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 39
103 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia

Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez

Abstract:

Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.

Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium

Procedia PDF Downloads 289
102 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 117