Search results for: product optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6774

Search results for: product optimization

5934 Pallet Tracking and Cost Optimization of the Flow of Goods in Logistics Operations by Serial Shipping Container Code

Authors: Dominika Crnjac Milic, Martina Martinovic, Vladimir Simovic

Abstract:

The case study method in this paper shows the implementation of Information Technology (IT) and the Serial Shipping Container Code (SSCC) in a Croatian company that deals with logistics operations and provides logistics services in the cold chain segment. This company is aware of the sensitivity of the goods entrusted to them by the user of the service, as well as of the importance of speed and accuracy in providing logistics services. To that end, it has implemented and used the latest IT to ensure the highest standard of high-quality logistics services to its customers. Looking for efficiency and optimization of supply chain management, while maintaining a high level of quality of the products that are sold, today's users of outsourced logistics services are open to the implementation of new IT products that ultimately deliver savings. By analysing the positive results and the difficulties that arise when using this technology, we aim to provide an insight into the potential of this approach of the logistics service provider.

Keywords: logistics operations, serial shipping container code, information technology, cost optimization

Procedia PDF Downloads 360
5933 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: reliability, optimization, meta-heuristic, genetic algorithm, redundancy

Procedia PDF Downloads 337
5932 Product Development in Company

Authors: Giorgi Methodishvili, Iuliia Methodishvili

Abstract:

In this paper product development algorithm is used to determine the optimal management of financial resources in company. Aspects of financial management considered include put initial investment, examine all possible ways to solve the problem and the optimal rotation length of profit. The software of given problems is based using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: management, software, optimal, greedy algorithm, graph-diagram

Procedia PDF Downloads 56
5931 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 317
5930 Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes

Authors: Seyed Sadegh Naseralavi, Mohsen Khatibinia

Abstract:

In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems.

Keywords: basic modal displacements, earthquake, optimization, spectrum

Procedia PDF Downloads 361
5929 Optimization of Polymerase Chain Reaction Condition to Amplify Exon 9 of PIK3CA Gene in Preventing False Positive Detection Caused by Pseudogene Existence in Breast Cancer

Authors: Dina Athariah, Desriani Desriani, Bugi Ratno Budiarto, Abinawanto Abinawanto, Dwi Wulandari

Abstract:

Breast cancer is a regulated by many genes. Defect in PIK3CA gene especially at position of exon 9 (E542K and E545K), called hot spot mutation induce early transformation of breast cells. The early detection of breast cancer based on mutation profile of this hot spot region would be hampered by the existence of pseudogene, marked by its substitution mutation at base 1658 (E545A) and deletion at 1659 that have been previously proven in several cancers. To the best of the authors’ knowledge, until recently no studies have been reported about pseudogene phenomenon in breast cancer. Here, we reported PCR optimization to to obtain true exon 9 of PIK3CA gene from its pseudogene hence increasing the validity of data. Material and methods: two genomic DNA with Dev and En code were used in this experiment. Two pairs of primer were design for Standard PCR method. The size of PCR products for each primer is 200bp and 400bp. While other primer was designed for Nested-PCR followed with DNA sequencing method. For Nested-PCR, we optimized the annealing temperature in first and second run of PCR, and the PCR cycle for first run PCR (15x versus 25x). Result: standard PCR using both primer pairs designed is failed to detect the true PIK3CA gene, appearing a substitution mutation at 1658 and deletion at 1659 of PCR product in sequence chromatogram indicated pseudogene. Meanwhile, Nested-PCR with optimum condition (annealing temperature for the first round at 55oC, annealing temperatung for the second round at 60,7oC with 15x PCR cycles) and could detect the true PIK3CA gene. Dev sample were identified as WT while En sample contain one substitution mutation at position 545 of exon 9, indicating amino acid changing from E to K. For the conclusion, pseudogene also exists in breast cancer and the apllication of optimazed Nested-PCR in this study could detect the true exon 9 of PIK3CA gene.

Keywords: breast cancer, exon 9, hotspot mutation, PIK3CA, pseudogene

Procedia PDF Downloads 244
5928 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 138
5927 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm

Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif

Abstract:

This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.

Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm

Procedia PDF Downloads 189
5926 Cultural-Creative Design with Language Figures of Speech

Authors: Wei Chen Chang, Ming Yu Hsiao

Abstract:

The commodity takes one kind of mark, the designer how to construction and interpretation the user how to use the process and effectively convey message in design education has always been an important issue. Cultural-creative design refers to signifying cultural heritage for product design. In terms of Peirce’s Semiotic Triangle: signifying elements-object-interpretant, signifying elements are the outcomes of design, the object is cultural heritage, and the interpretant is the positioning and description of product design. How to elaborate the positioning, design, and development of a product is a narrative issue of the interpretant, and how to shape the signifying elements of a product by modifying and adapting styles is a rhetoric matter. This study investigated the rhetoric of elements signifying products to develop a rhetoric model with cultural style. Figures of speech are a rhetoric method in narrative. By adapting figures of speech to the interpretant, this study developed the rhetoric context of cultural context by narrative means. In this two-phase study, phase I defines figures of speech and phase II analyzes existing cultural-creative products in terms of figures of speech to develop a rhetoric of style model. We expect it can reference for the future development of Cultural-creative design.

Keywords: cultural-creative design, cultural-creative products, figures of speech, Peirce’s semiotic triangle, rhetoric of style model

Procedia PDF Downloads 373
5925 Optimal Wheat Straw to Bioethanol Supply Chain Models

Authors: Abdul Halim Abdul Razik, Ali Elkamel, Leonardo Simon

Abstract:

Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw.

Keywords: bio-ethanol, optimization, supply chain, wheat straw

Procedia PDF Downloads 737
5924 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 34
5923 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 27
5922 Modelling and Optimization of Laser Cutting Operations

Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail

Abstract:

Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.

Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE

Procedia PDF Downloads 622
5921 Towards Sustainable Consumption: A Framework for Assessing Supplier's Commitment

Authors: O. O. Oguntoye

Abstract:

Product consumption constitutes an important consideration for sustainable development. Seeing how product consumption could be highly unsustainable, coupled with how existing policies on corporate responsibility do not particularly address the consumption aspect of product lifecycle, conducting this research became necessary. The research makes an attempt to provide a framework by which to gauge corporate responsibility of product suppliers in terms of their commitment towards the sustainable consumption of their products. Through an exploration of relevant literature, independently established ideas with which to assess a given product supplier were galvanised into a four-criterion framework. The criteria are: (1) Embeddedness of consumption as a factor in corporate sustainability policy, (2) Level of understanding of consumption behaviour, (3) Breadth of behaviour-influencing strategies adopted, and (4) Inclusiveness for all main dimensions of sustainability. This resulting framework was then applied in a case study involving a UK-based furniture supplier where interviews and content analysis of corporate documents were used as the mode for primary data collection. From the case study, it was found that the supplier had performed to different levels across the four themes of the assessment. Two major areas for improvement were however identified – one is for the furniture supplier to focus more proactively on understanding consumption behaviour and, two is for it to widen the scope of its current strategies for enhancing sustainable consumption of supplied furniture. As a generalisation, the framework presented here makes it possible for companies to reflect with a sense of guidance, how they have demonstrated commitment towards sustainable consumption through their values, culture, and operations. It also provides a foundation for developing standardized assessment which the current widely used frameworks such as the GRI, the Global Compact, and others do not cover. While these popularly used frameworks mainly focus on sustainability of companies within the production and supply chain management contexts (i.e. mostly ‘upstream’), the framework here provides an extension by bringing the ‘downstream’ or consumer bit into light.

Keywords: corporate sustainability, design for sustainable consumption, extended producer responsibility, sustainable consumer behaviour

Procedia PDF Downloads 419
5920 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
5919 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications

Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan

Abstract:

Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.

Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification

Procedia PDF Downloads 510
5918 Chemical and Sensorial Evaluation of a Newly Developed Bean Jam

Authors: Raquel P. F. Guiné, Ana R. B. Figueiredo, Paula M. R. Correia, Fernando J. Gonçalves

Abstract:

The purpose of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. The product, a jam, was prepared with the beans’ cooking water combined with fresh apple or carrot, without the addition of any conservatives. Three different jams were produced: bean and carrot, bean and apple and bean, apple and cinnamon. The developed products underwent a sensorial analysis that revealed that the bean, apple and cinnamon jam was globally better accepted. However, with this study, the consumers determined that the bean and carrot jam had the most attractive color and the bean and apple jam the better consistency. Additionally, it was possible to analyze the jams for their chemical components, namely fat, fiber, protein, sugars and antioxidant activity. The obtained results showed that the bean and carrot jam had the highest lipid content, while the bean, apple and cinnamon jam had the highest fiber content, when compared to the other two jams. Regarding the sugar content, both jams with apple revealed similar sugar values, which were higher than the sugar content of the bean and carrot jam. The antioxidant activity was on average 10 mg TE/g.

Keywords: Bean jam, chemical composition, sensorial analysis, product acceptability

Procedia PDF Downloads 411
5917 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 26
5916 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation

Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić

Abstract:

With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.

Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization

Procedia PDF Downloads 175
5915 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.

Keywords: multi objective optimization, pareto front, composite patch, cracked pipe

Procedia PDF Downloads 312
5914 The Importance of Optimization of Halal Tourism: A Study of the Development of Halal Tourism in Indonesia

Authors: Rizqi W. Romadhon, Nur Arifan

Abstract:

Halal Tourism is a part of tourism industry which is based on Islamic Principle and addressed to the Muslim tourist. The potency of halal tourism is very broad to be developed, because the growth of Muslim populations is rapidly increasing. Indonesia is one of the biggest countries with Majority of its population is Muslim, therefore human resources and natural resources have very good potential to be part of the Halal tourism industry. But the fact is Indonesia can not optimize the potential of human resources and natural resources as well as neighboring countries carried out. This paper will discuss the reasons of the importance of developing Halal tourism, and the factors influencing the success of developing halal tourism in Indonesia, and also the optimization strategies which can be adopted by the government so that the Halal tourism industry in Indonesia has a sustainable competitive advantage. The existence of this research is expected to government, tourism agents and others can optimize the potency of Indonesia’s Human resources and natural resources for developing Halal tourism industry in Indonesia.

Keywords: halal tourism, Islamic principle, optimization, sustainable competitive advantage

Procedia PDF Downloads 385
5913 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities

Authors: Tomoaki Hashimoto

Abstract:

Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.

Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints

Procedia PDF Downloads 279
5912 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 454
5911 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 421
5910 Interaction Design In Home Appliance: An Integrated Approach InKanseiAnd Hedonomic “Cases: Rice Cooker, Juicer, Mixer”

Authors: Sara Mostowfi, Hassan Sadeghinaeini, Sana Behnamasl, Leila Ensaniat, Maryam Mostafaee

Abstract:

Nowadays, most of product producers, e.g. home appliance, electronic machines and vehicles focus on quality and comfort, and promise consumers ease of use and pleasurable experiences during product using. Consumers make their purchase decisions according to two needs: functional and emotional needs. Functional needs are fulfilled by product functionality, besides emotional needs are related to psychologists’ aspects of production. Emotions are distinctive elements which should be added to products and services to lead them up. In this case, the authors’ survey conducted pleasurable and hedonomic aspects in products of a home appliance company in Iran. In this regard, three samples of home appliance were selected: mixer, rice cooker, iron. Fifteen women (20-60) participated in this study. Every user evaluated each product by questionnaire based on 7 point semantic differential scale. After analyzing the results with statistical methods, results showed that 90% of users aren’t satisfied with hedonic and pleasurable criteria in interaction with these products. They notified that regarding hedonomics and pleasurable criteria’s they will have better ease of use and functionality. Our findings show a significant association between products’ features and user satisfaction. It seems that industrial design has a significant impression on the company’s products and with regard the pleasurable criteria the company sales will be more successful.

Keywords: home appliance, interaction, pleasure, hedonomy, ergonomy

Procedia PDF Downloads 383
5909 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology

Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong

Abstract:

The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.

Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology

Procedia PDF Downloads 387
5908 Language Choice and Language Maintenance of Northeastern Thai Staff in Suan Sunandha Rajabhat University

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production, 2) product development, 3) the community strength, 4) marketing possibility, and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors, 2) evaluate the strategy based on Sufficiency Economic Philosophy, and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, language choice

Procedia PDF Downloads 238
5907 The Impact of Innovation Catalog of Products to Achieve the Fulfillment of Customers

Authors: Azzi Mohammed Amin

Abstract:

The study aimed to measure the impact of the product for its size marketing innovation (the development of existing products, innovation of new products) in achieving customer loyalty from the perspective of a sample of consumers brand (Omar Ben Omar) food in the state of Biskra, and also measure the degree of customer loyalty to the brand. To achieve the objectives of the study, designed a form and distributed to a random sample of 280 consumers of the brand, has been relying on SPSS to analyze the results, the study revealed several findings; There is a strong customer loyalty to Omar bin Omar products. The presence of the impact of product innovation (development of existing products, the innovation of new products) on customer loyalty, with a Pearson correlation coefficient of 0.74 is a strong relationship. The presence of a statistically significant effect for the development of existing products in customer loyalty. The presence of a statistically significant effect for the innovation of new products to customer loyalty.

Keywords: marketing innovation, product innovation, customer loyalty, products

Procedia PDF Downloads 531
5906 Spectrum Allocation in Cognitive Radio Using Monarch Butterfly Optimization

Authors: Avantika Vats, Kushal Thakur

Abstract:

This paper displays the point at issue, improvement, and utilization of a Monarch Butterfly Optimization (MBO) rather than a Genetic Algorithm (GA) in cognitive radio for the channel portion. This approach offers a satisfactory approach to get the accessible range of both the users, i.e., primary users (PUs) and secondary users (SUs). The proposed enhancement procedure depends on a nature-inspired metaheuristic algorithm. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. Southern Canada and the northern USA (land 1), and Mexico (Land 2). The positions of the monarch butterflies are modernizing in two ways. At first, the offsprings are generated (position updating) by the migration operator and can be adjusted by the migration ratio. It is trailed by tuning the positions for different butterflies by the methods for the butterfly adjusting operator. To keep the population unaltered and minimize fitness evaluations, the aggregate of the recently produced butterflies in these two ways stays equivalent to the first population. The outcomes obviously display the capacity of the MBO technique towards finding the upgraded work values on issues regarding the genetic algorithm.

Keywords: cognitive radio, channel allocation, monarch butterfly optimization, evolutionary, computation

Procedia PDF Downloads 76
5905 Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique

Authors: Reza Sadeghi

Abstract:

In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants.

Keywords: colorimetric assay, microwave heating, Oryzaephilus mercator, mortality

Procedia PDF Downloads 89