Search results for: prediction of publications
1796 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators
Authors: K. O'Malley
Abstract:
Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university
Procedia PDF Downloads 321795 Alternative Hypotheses on the Role of Oligodendrocytes in Neurocysticercosis: Comprehensive Review
Authors: Humberto Foyaca Sibat, Lourdes de Fátima Ibañez Valdés
Abstract:
Background Cysticercosis (Ct) is a preventable and eradicable zoonotic parasitic disease secondary to a cestode infection by the larva form of pig tapeworm Taenia solium (Ts), mainly seen in people living in developing countries. When the cysticercus is in the brain parenchymal, intraventricular system, subarachnoid space (SAS), cerebellum, brainstem, optic nerve, or spinal cord, then it has named neurocysticercosis (NCC), and the often-clinical manifestations are headache and epileptic seizures/epilepsy among other less frequent symptoms and signs. In this study, we look for a manuscript related to the role played by oligodendrocytes in the pathogenesis of NCC. We review this issue and formulate some hypotheses regarding its role and the role played in the pathogenesis of calcified NCC and epileptic seizures, and secondary epilepsy. Method: We searched the medical literature comprehensively, looking for published medical subject heading (MeSH) terms like "neurocysticercosis", "pathogenesis of neurocysticercosis", "comorbidity in NCC"; OR "oligodendrocytes"; OR "oligodendrocyte precursor cells(OPC/NG2)"; OR "epileptic seizures(ES)/Epilepsy(Ep)/NCC" OR "oligodendrocytes(OLG)/ES/Ep”; OR "calcified NCC/OLG"; OR “OLG Ca2+.” Results: All selected manuscripts were peer-reviewed, and we did not find publications related to OLG/NCC.Keywords: oligodendrocytes, neurocysticercosis, oligodendrocytes, oligodendrocyte precursor cell, KG2, calcified neurocysticercosis, cellular calcium influx.
Procedia PDF Downloads 751794 Digital Twin for Retail Store Security
Authors: Rishi Agarwal
Abstract:
Digital twins are emerging as a strong technology used to imitate and monitor physical objects digitally in real time across sectors. It is not only dealing with the digital space, but it is also actuating responses in the physical space in response to the digital space processing like storage, modeling, learning, simulation, and prediction. This paper explores the application of digital twins for enhancing physical security in retail stores. The retail sector still relies on outdated physical security practices like manual monitoring and metal detectors, which are insufficient for modern needs. There is a lack of real-time data and system integration, leading to ineffective emergency response and preventative measures. As retail automation increases, new digital frameworks must control safety without human intervention. To address this, the paper proposes implementing an intelligent digital twin framework. This collects diverse data streams from in-store sensors, surveillance, external sources, and customer devices and then Advanced analytics and simulations enable real-time monitoring, incident prediction, automated emergency procedures, and stakeholder coordination. Overall, the digital twin improves physical security through automation, adaptability, and comprehensive data sharing. The paper also analyzes the pros and cons of implementation of this technology through an Emerging Technology Analysis Canvas that analyzes different aspects of this technology through both narrow and wide lenses to help decision makers in their decision of implementing this technology. On a broader scale, this showcases the value of digital twins in transforming legacy systems across sectors and how data sharing can create a safer world for both retail store customers and owners.Keywords: digital twin, retail store safety, digital twin in retail, digital twin for physical safety
Procedia PDF Downloads 721793 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2921792 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1561791 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 3781790 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data
Authors: Natalia Feruleva
Abstract:
The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data
Procedia PDF Downloads 1191789 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature
Authors: Kibrom Hadush
Abstract:
Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature
Procedia PDF Downloads 1411788 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates
Authors: Selvam M., Vadthya Poornachandar, Surender Singh
Abstract:
These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design
Procedia PDF Downloads 1581787 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1061786 Data Integrity: Challenges in Health Information Systems in South Africa
Authors: T. Thulare, M. Herselman, A. Botha
Abstract:
Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.Keywords: data integrity, data integrity challenges, hospital information systems, South Africa
Procedia PDF Downloads 1811785 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1491784 New Strategy for Breeding of Artemisia annua L. for a Sustainable Production of the Antimalarial Drug Artemisinin
Authors: Nadali Babaeian Jelodar, Chan Lai Keng, Arvind Bhatt, Laleh Bordbar, Leow E Shuen, Kamaruzaman Mohamed
Abstract:
Recently artemisinin (the endoperoxide sesquiterpene lactone) has received considerable attention because of its antimalarial activity. It is isolated from the aerial part of the Artemisia annua L. Artemisinin is very difficult to synthesise also its production by mean of cell, tissue or organ cultures is very low. Presently, only its extraction from A. annua L. plants remains the only source of the drug. The reported yield of artemisinin from leaves of A. annua L. is very low and unstable, with yields typically less than 1% of leaf dry weight. To increase the percentage of artemisinin, researchers have been engaged in developing new varieties. A review concerning the breeding of A. annua L. is presented. The aim of this review is to bring together most of the available scientific research papers about the breeding conducted on the genus A. annua L., which is currently scattered across various publications. Through this review the authors hope to attract the attention of breeders throughout the world to focus on the unexplored potential of A. annua L. species. Also the future scope of this plant has been emphasized with a view of the importance of breeding of A. annua L. for increasing of artemisinin content. By releasing of new cultivar of A. annua L. and cultivation of this plant offers the opportunity to optimize yield and achieve a uniform, high quality product.Keywords: Artemisia annua L., breeding, artemisinin, cultivation, medicinal plant
Procedia PDF Downloads 2631783 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7271782 21st Century Provocation: Modern Slavery, the Implications for Individuals on the Autism Spectrum
Authors: Christina Surmei
Abstract:
Autism Spectrum Disorder (ASD) is defined as a diverse range of developmental conditions that affect an individual’s functionality. ASD is not linear, and individuals can present with deficits in social interaction, communication, and demonstrate limited, repetitive patterns of behaviour, interests, or activities. These characteristics may be observed in a variety of ways and range from mild to severe. ASD may include autism disorder, pervasive developmental disorder not otherwise specified, Asperger’s, or other related pervasive developmental disorders. Modern slavery is defined as 'situations of exploitation that a person cannot refuse or leave because of threats, violence, coercion, and abuse of power or deception'. A review of the literature investigated the prevalence of research regarding ASD and modern slavery. Two universal search engines and five online journals were used as the apparatuses of inquiry. The results revealed two editorials, one study, and one act, totaling four publications attesting to ASD and modern slavery as a joint entity. This is representative of a vast absence of research. However, as individual entities research on autism and modern slavery is in a general high occurrence. This paper has identified a significant gap in research on ASD and modern slavery, and initiates the dialogue to unpack a significant global issue in society today.Keywords: autism spectrum, education, modern slavery, support
Procedia PDF Downloads 1681781 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 921780 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 3141779 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces
Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz
Abstract:
The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.Keywords: carbon nanotubes, static friction, dynamic friction
Procedia PDF Downloads 3141778 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 1541777 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 4041776 Deterrents in Tourism Development in Pakistan: A Case Study of Northern Areas
Authors: Qurat Ul Ain Bashir
Abstract:
Since the inception of Pakistan Tourism industry was not on developed level but afterwards 9/11 the tourism has declined rapidly in the country. Despite Northern areas full potential, rich historical and cultural heritage, natural beauty, museums, art galleries, hiking tracks, tourism is not getting that response in Pakistan, which it deserves. In fact Pakistan has been blessed with all the features that could make her a tourist destination. On the other side the attitude of the local people, socio-political condition, lack of facilities of international standards, media’s way of reporting about country, governments’ negligence etc has more adversely affected the international tourism than domestic tourism. From 2013 onward some developments in the said industry has been shown but that is not much encouraging. In 2017 approximately two million tourist visited Pakistan in comparison to 1.75 million in 2016. In the light of above debate the paper attempts to diagnose the causes which are not allowing the reasonable growth of tourism in Pakistan and suggests steps which must be taken to develop the industry through a large scale campaign and long term planning. The methodology about this research is quantitative with reference to description, analysis and recommendations. The material would be collected from the government publications, articles, surveys, tourist accounts, books, internet, magazines.Keywords: tourism, terrorism, barriers, infrastructure, culture, northern areas
Procedia PDF Downloads 1411775 Trauma Scores and Outcome Prediction After Chest Trauma
Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag
Abstract:
Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries
Procedia PDF Downloads 4211774 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5771773 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran
Authors: Fatemeh Faramarzi, Hosein Mahjoob
Abstract:
Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6
Procedia PDF Downloads 3131772 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 1121771 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2081770 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 731769 The Difference of Menstrual Cycle Profile and Urinary Luteinizing Hormone Changes In Polycystic Ovary Syndrome And Healthy Women
Authors: Ning Li, Jiacheng Zhang, Zheng Yang, Sylvia Kang
Abstract:
Introduction: Polycystic ovary syndrome (PCOS) is a common physiological symptom in women of reproductive age. Women with PCOS may have infrequent or prolonged menstrual periods and excess male hormone (androgen) levels. Mira analyzes the cycle profiles and the luteinizing hormone (LH) changes in urine, closely related to the fertility level of healthy women and PCOS women. From the difference between the two groups, Mira helps to understand the physiological state of PCOS women and their hormonal changes in the menstrual cycle. Methods: In this study, data from 1496 cycles and information from 342 women belonging to two groups (181 PCOS and 161 Healthy) were collected and analyzed. Women test their luteinizing hormone (LH) in urine daily with Mira fertility test wand and Mira analyzer, from the day after the menstruation to the starting day of the next menstruation. All the collected data meets Mira’s user agreement and users’ identification was removed. The cycle length, LH peak, and other cycle information of the PCOS group were compared with the Healthy group. Results: The average cycle length of PCOS women is 41 days and of the Healthy women is 33 days. 91.4% of cycle length is within 40 days for the Healthy group, while it decreases to 71.9% for the PCOS group. This means PCOS women have a longer menstrual cycle and more variation during the cycle. With more variation, the ovulation prediction becomes more difficult for the PCOS group. The deviation between the LH surge day and the predicted ovulation day, calculated by the starting day of the next menstruation minus 14 days, is greater in the PCOS group compared with the Healthy group. Also, 46.96% of PCOS women have an irregular cycle, and only 19.25% of healthy women show an irregular cycle. Conclusion: PCOS women have longer menstrual cycles and more variation during the menstrual cycles. The traditional ovulation prediction is not suitable for PCOS women.Keywords: menstrual cycle, PCOS, urinary luteinizing hormone, Mira
Procedia PDF Downloads 1801768 Study on Conservation and Regeneration of the Industrial Buildings
Authors: Rungpansa Noichan, Bart Julian Dewancker
Abstract:
The conservation and regeneration of historical industrial building is one of the most important issues to be solved in today’s urban development in the world. There are growing numbers of industrial building in which promoting heritage conservation maybe a helpful tool for a sustainable city in social, urban restructuring, environmental and economic component. This paper identifies the key attributes of conservation and regeneration industrial building from the literature, were discussed by reviewing its development at home and abroad. The authors have investigated 93 industrial buildings, which were used as industrial building before and reused into buildings with another function afterward. The data to be discussed below were mainly collected from various publications but also from available internet sources. This study focuses on green transformation, historical culture heritage, transformation techniques, and urban regeneration based on the empirical researches on the historical industrial building and site. Moreover, we focus on social, urban environment and sustainable development. The implications of the study provide suggestions for future improvements in the conservation and regeneration of historical industrial building, and inspire new ways of use, so the building becomes flexible and can consequently be adaptable to changes in order to survive time. Therefore, the building does not take into account only its future impact in the environment and society. Instead, it focuses on its entire life cycle.Keywords: industrial building, heritage conservation, green transformation, regeneration, sustainable development
Procedia PDF Downloads 3701767 Open Minds but Closed Access: Why Are There so Few Gold Open Access LIS Journals And Why Are so Many Librarians Unwilling to Unlock Their Scholarship?
Authors: Sarah Baker, Jayati Chaudhuri
Abstract:
Librarians have embraced the open access movement in all disciplines but their own. They are strong advocates on college campuses and curate institutional repositories, yet there are surprisingly few open access LIS journals. Presenters evaluated the open access availability of library and information science literature. After analyzing the top 100 library science journals (the top 50 journals from Scimago and JCR) and finding very few gold open access journals, they then investigated the availability of open access articles from the top 10 closed access journals. Presenters would like to generate a conversation on what type of proactive approach librarians can take to increase open access to literature within our discipline. Librarians like their colleagues in other disciplines are not motivated to submit their articles to their institutional repositories. Presenters have found a similar reluctance from their fellow colleagues regarding open access initiatives on campus. Presenters will describe Open Access Week activities as part of a campus-wide initiative and share some faculty comments, concerns, and misconceptions that came up as a part of this dialog. Presenters will discuss their personal experiences providing access to faculty publications through the California State University Los Angeles institutional repository.Keywords: faculty scholarship, institutional repositories, library and information science journals, open access
Procedia PDF Downloads 331