Search results for: oil palm tree census
544 The Effect of Extensive Mosquito Migration on Dengue Control as Revealed by Phylogeny of Dengue Vector Aedes aegypti
Authors: M. D. Nirmani, K. L. N. Perera, G. H. Galhena
Abstract:
Dengue has become one of the most important arbo-viral disease in all tropical and subtropical regions of the world. Aedes aegypti, is the principal vector of the virus, vary in both epidemiological and behavioral characteristics, which could be finely measured through DNA sequence comparison at their population level. Such knowledge in the population differences can assist in implementation of effective vector control strategies allowing to make estimates of the gene flow and adaptive genomic changes, which are important predictors of the spread of Wolbachia infection or insecticide resistance. As such, this study was undertaken to investigate the phylogenetic relationships of Ae. aegypti from Galle and Colombo, Sri Lanka, based on the ribosomal protein region which spans between two exons, in order to understand the geographical distribution of genetically distinct mosquito clades and its impact on mosquito control measures. A 320bp DNA region spanning from 681-930 bp, corresponding to the ribosomal protein, was sequenced in 62 Ae. aegypti larvae collected from Galle (N=30) and Colombo (N=32), Sri Lanka. The sequences were aligned using ClustalW and the haplotypes were determined with DnaSP 5.10. Phylogenetic relationships among haplotypes were constructed using the maximum likelihood method under Tamura 3 parameter model in MEGA 7.0.14 including three previously reported sequences of Australian (N=2) and Brazilian (N=1) Ae. aegypti. The bootstrap support was calculated using 1000 replicates and the tree was rooted using Aedes notoscriptus (GenBank accession No. KJ194101). Among all sequences, nineteen different haplotypes were found among which five haplotypes were shared between 80% of mosquitoes in the two populations. Seven haplotypes were unique to each of the population. Phylogenetic tree revealed two basal clades and a single derived clade. All observed haplotypes of the two Ae. aegypti populations were distributed in all the three clades, indicating a lack of genetic differentiation between populations. The Brazilian Ae. aegypti haplotype and one of the Australian haplotypes were grouped together with the Sri Lankan basal haplotype in the same basal clade, whereas the other Australian haplotype was found in the derived clade. Phylogram showed that Galle and Colombo Ae. aegypti populations are highly related to each other despite the large geographic distance (129 Km) indicating a substantial genetic similarity between them. This may have probably arisen from passive migration assisted by human travelling and trade through both land and water as the two areas are bordered by the sea. In addition, studied Sri Lankan mosquito populations were closely related to Australian and Brazilian samples. Probably this might have caused by shipping industry between the three countries as all of them are fully or partially enclosed by sea. For example, illegal fishing boats migrating to Australia by sea is perhaps a good mean of transportation of all life stages of mosquitoes from Sri Lanka. These findings indicate that extensive mosquito migrations occur between populations not only within the country, but also among other countries in the world which might be a main barrier to the successful vector control measures.Keywords: Aedes aegypti, dengue control, extensive mosquito migration, haplotypes, phylogeny, ribosomal protein
Procedia PDF Downloads 190543 Rural Sanitation in India: Special Context in the State of Odisa
Authors: Monalisha Ghosh, Asit Mohanty
Abstract:
The lack of sanitation increases living costs, decreases spend on education and nutrition, lowers income earning potential, and threatens safety and welfare. This is especially true for rural India. Only 32% of rural households have their own toilets and that less than half of Indian households have a toilet at home. Of the estimated billion people in the world who defecate in the open, more than half reside in rural India. It is empirically established that poor sanitation leads to high infant mortality rate and low income generation in rural India. In India, 1,600 children die every day before reaching their fifth birthday and 24% of girls drop out of school as the lack of basic sanitation. Above all, lack of sanitation is not a symptom of poverty but a major contributing factor. According to census 2011, 67.3% of the rural households in the country still did not have access to sanitation facilities. India’s sanitation deficit leads to losses worth roughly 6% of its gross domestic product (GDP) according to World Bank estimates by raising the disease burden in the country. The dropout rate for girl child is thirty percent in schools in rural areas because of lack of sanitation facilities for girl students. The productivity loss per skilled labors during a year is calculated at Rs.44, 160 in Odisha. The performance of the state of Odisha has not been satisfactory in improving sanitation facilities. The biggest challenge is triggering behavior change in vast section of rural population regarding need to use toilets. Another major challenge is funding and implementation for improvement of sanitation facility. In an environment of constrained economic resources, Public Private Partnership in form of performance based management or maintenance contract will be all the more relevant to improve the sanitation status in rural sector.Keywords: rural sanitation, infant mortality rate, income, granger causality, pooled OLS method test public private partnership
Procedia PDF Downloads 423542 Chinese on the Move: Residential Mobility and Evolution of People's Republic of China-Born Migrants in Australia
Authors: Siqin Wang, Jonathan Corcoran, Yan Liu, Thomas Sigler
Abstract:
Australia is a quintessentially immigrant nation with 28 percent of its residents being foreign-born. By 2011, People’s Republic of China (PRC) overtook the United Kingdom to become the largest source country in Australia. Significantly, the profile of PRC-born migrants has changed to mirror broader global shifts towards high-skilled labour, education-related, and investment-focussed migration, all of which reflect an increasing trend in the mobility of wealthy and/or educated cohorts. Together, these coalesce to form a more complex pattern of migrant settlement –both spatially and socio-economically. This paper focuses on the PRC-born migration, redresses these lacunae, with regard to the settlement outcomes of PRC migrants to Australia, with a particular focus on spatial evolution and residential mobility at both the metropolitan and national scales. By drawing on Census Data and migration Micro Datasets, the aim of this paper is to examine the shifting dynamics of PRC-born migrants in Australian capital cities to unveil their socioeconomic characteristics, residential patterns and change of spatial concentrations during their transition into the new host society. This paper finds out three general patterns in the residential evolution of PRC-born migrants depending on the size of capital cities where they settle down, as well as the association of socio-economic characters with the formation of enclaves. It also examines the residential mobility across states and cities from 2001 to 2011 indicating the rising status of median-size Australian capital cities for receiving PRC-born migrants. The paper concludes with a discussion of evidences for policy formation, facilitates the effective transition of PRC-born populations into the mainstream of host society and enhances social harmony to help Australia become a more successful multicultural nation.Keywords: Australia, Chinese migrants, residential mobility, spatial evolution
Procedia PDF Downloads 233541 Kinetics Analysis of Lignocellulose Hydrolysis and Glucose Consumption Using Aspergillus niger in Solid State
Authors: Akida Mulyaningtyas, Wahyudi Budi Sediawan
Abstract:
One decisive stage in bioethanol production from plant biomass is the hydrolysis of lignocellulosic materials into simple sugars such as glucose. The produced glucose is then fermented into ethanol. This stage is popularly done in biological method by using cellulase that is produced by certain fungi. As it is known, glucose is the main source of nutrition for most microorganisms. Therefore, cutting cellulose into glucose is actually an attempt of microorganism to provide nutrition for itself. So far, this phenomenon has received less attention while it is necessary to identify the quantity of sugar consumed by the microorganism. In this study, we examined the phenomenon of sugar consumption by microorganism on lignocellulosic hydrolysis. We used oil palm empty fruit bunch (OPEFB) as the source of lignocellulose and Aspergillus niger as cellulase-producing fungus. In Indonesia, OPEFB is plantation waste that is difficult to decompose in nature and causes environmental problems. First, OPEFB was pretreated with 1% of NaOH at 170 oC to destroy lignin that hindered A.niger from accessing cellulose. The hydrolysis was performed by growing A.niger on pretreated OPEFB in solid state to minimize the possibility of contamination. The produced glucose was measured every 24 hours for 9 days. We analyzed the kinetics of both reactions, i.e., hydrolysis and glucose consumption, simultaneously. The constants for both reactions were assumed to follow the Monod equation. The results showed that the reaction constant of glucose consumption (μC) was higher than of cellulose hydrolysis (μH), i.e., 11.8 g/L and 0.62 g/L for glucose consumption and hydrolysis respectively. However, in general, the reaction rate of hydrolysis is greater than of glucose consumption since the cellulose concentration as substrate in hydrolysis is much higher than glucose as substrate in the consumption reaction.Keywords: Aspergillus niger, bioethanol, hydrolysis, kinetics
Procedia PDF Downloads 170540 Socio-Demographic Factors and Testing Practices Are Associated with Spatial Patterns of Clostridium difficile Infection in the Australian Capital Territory, 2004-2014
Authors: Aparna Lal, Ashwin Swaminathan, Teisa Holani
Abstract:
Background: Clostridium difficile infections (CDIs) have been on the rise globally. In Australia, rates of CDI in all States and Territories have increased significantly since mid-2011. Identifying risk factors for CDI in the community can help inform targeted interventions to reduce infection. Methods: We examine the role of neighbourhood socio-economic status, demography, testing practices and the number of residential aged care facilities on spatial patterns in CDI incidence in the Australian Capital Territory. Data on all tests conducted for CDI were obtained from ACT Pathology by postcode for the period 1st January 2004 through 31 December 2014. Distribution of age groups and the neighbourhood Index of Relative Socio-economic Advantage Disadvantage (IRSAD) were obtained from the Australian Bureau of Statistics 2011 National Census data. A Bayesian spatial conditional autoregressive model was fitted at the postcode level to quantify the relationship between CDI and socio-demographic factors. To identify CDI hotspots, exceedance probabilities were set at a threshold of twice the estimated relative risk. Results: CDI showed a positive spatial association with the number of tests (RR=1.01, 95% CI 1.00, 1.02) and the resident population over 65 years (RR=1.00, 95% CI 1.00, 1.01). The standardized index of relative socio-economic advantage disadvantage (IRSAD) was significantly negatively associated with CDI (RR=0.74, 95% CI 0.56, 0.94). We identified three postcodes with high probability (0.8-1.0) of excess risk. Conclusions: Here, we demonstrate geographic variations in CDI in the ACT with a positive association of CDI with socioeconomic disadvantage and identify areas with a high probability of elevated risk compared with surrounding communities. These findings highlight community-based risk factors for CDI.Keywords: spatial, socio-demographic, infection, Clostridium difficile
Procedia PDF Downloads 323539 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic
Authors: Novee Lor C. Leyso, Maylin C. Palatino
Abstract:
Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition
Procedia PDF Downloads 141538 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention
Authors: Ashish Kumar, Kaptan Singh, Amit Saxena
Abstract:
Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.Keywords: K-nearest neighbor, random forest, decision tree, pre-processing
Procedia PDF Downloads 94537 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations
Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos
Abstract:
Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest
Procedia PDF Downloads 177536 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy
Authors: M. Regina Carreira-Lopez
Abstract:
Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.Keywords: hypernymy, information retrieval, lightweight ontology, resonance
Procedia PDF Downloads 126535 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 371534 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 170533 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 539532 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 56531 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 419530 “The Effectiveness of Group Logo Therapy on Meaning and Quality of Life of Women in Old Age Home”
Authors: Sophia Cyril Vincent
Abstract:
Background: As per the Indian Census 2011, there is nearly 104 million elderly population aged above 60 years (53 million females and 51 males), and the count is expected to be 173 million by the end of 2026. Nearly 5.5% of women and 1.5% of men are living alone.1 In India, even though it is the moral duty of the children to take care of aged parents, many elders are landing in old age homes due to the social transformation factors like mushrooming of nuclear families, migration of children, cultural echoes, differences in mindset and values. Nearly 728 old age homes are seen across the country, out of which 78 old age homes with approximately 3000 inmates are seen only in Bangalore2. The existing literature shows that elderly women residing in old age homes experience the challenges like- loneliness, health issues, rejection from children, grief, death anxiety, etc, which leads to mental and physical wellbeing in numerous and tangible ways3. Hence the best and cost-effective way to improve the meaning and quality of life among elderly females is logotherapy, a type of psychotherapeutic analysis and treatment, motivating and driving force4 within the human experience to lead a decent life. Aim: The current research is aimed at studying the effectiveness of a logotherapy intervention on meaning and quality of life among elderly women of old age homes. Samples:200 women aged < 60 years and staying in the old age home for more than 1 year were randomly allocated to the control group and experimental group. Methodology: Using the Meaning in life questionnaire (MLQ)and the World health organization quality of life (WHOQOL) questionnaire, meaning and quality of life were assessed among both groups' women. Intensive Logotherapy and meaning in life program for five days were provided for the experimental group and the control group, with no treatment. Result: Under analysis. Conclusion: It is the right of the elderly woman to lead a happy and peaceful life till her death irrespective of the residing place. Hence, continuous monitoring and effective management are necessary for elderly women.Keywords: quality of life, meaning of life, logo therapy, old age home
Procedia PDF Downloads 205529 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox
Authors: Jessica M. Black
Abstract:
Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary workKeywords: methodology, natural science, social science, transdisciplinary
Procedia PDF Downloads 117528 Legal Pluralism and Land Administration in West Sumatra: The Implementation of the Regulations of Both Local and Nagari Governments on Communal Land Tenure
Authors: Hilaire Tegnan
Abstract:
Land administration has always been a delicate issue in the history of nations, and Indonesia, a country where a significant number of the population lives a pastoral life is not exempt from this reality. This paper discusses land tenure issues in West Sumatra, an Indonesian province which is home to the Minangkabau people with their long existing village management system known as Nagari, established to settle disputes based on adat (custom) principles as well as to protect the rights of the community members. These rights include communal land (referred to as tanahulayat hereafter). Long before the Dutch occupation of Indonesian archipelago, the nagari government was vested with powers to regulate communal land in West Sumatra. However, this authority was constantly overlooked by the then Dutch colonial administration as well as the post-independence governments (both central and regional). To reinforce the Nagari government as the guardian of the customary law (hukumadat) and to specify its jurisdiction, the Regional Government of West Sumatra enacted two laws between 2000 and 2008: Law No. 9/2000 repealed by Law No. 2/2007 and Law No. 6/2008 on communal land tenure. Although these two laws provide legal grounds to address land issues across the region, land conflicts still prevail among West Sumatran populations due to unsynchronized and contradictory regulations. The protests against the army (Korem) in Nagari Kapalo Hilalang, against the oil palm company in Nagari Kinali, and against a cement factory in Nagari Lubuk Kilangan are cited in this paper as case references.Keywords: local government, Nagari government, Tanah Ulayat, legal pluralism, land administration
Procedia PDF Downloads 509527 On an Approach for Rule Generation in Association Rule Mining
Authors: B. Chandra
Abstract:
In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.Keywords: knowledge discovery, association rule mining, antecedent support, rule generation
Procedia PDF Downloads 326526 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine
Procedia PDF Downloads 153525 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets
Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi
Abstract:
Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.Keywords: data sets, recommendation system, utility item sets, frequent item sets mining
Procedia PDF Downloads 295524 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 147523 Simple Assessments to Demystify Complementary Feeding: Leveraging a Successful Literacy Initiative Assessment Approach in Gujarat, India
Authors: Smriti Pahwa, Karishma Vats, Aditi Macwan, Jija Dutt, Sumukhi Vaid
Abstract:
Age approporiate complementary feeding has been stressed upon for sound young child nutrition and appropriate growth. National Infant and Young Child Feeding guidelines, policies and programs indicate cognizance of the issue taken by the country’s government, policy makers and technical experts. However, it is important that ordinary people, the caregivers of young children too understand the importance of appropriate feeding. For this, an interface might be required where ordinary people could participate in assessing the gaps in IYCF as a first step to take subsequent action. In this context an attempt was made to extrapolate a citizen led learning level survey that has been involving around 25000 ordinary citizens to reach out to 600,000 children annually for over a decade in India. Based on this philosophy of involving ordinary people in simple assessments to produce understandable actionable evidence, a rapid diet assessment tool was developed and collected from caregivers of 90 < 3year children from two urban clusters in Ahmedabad and Baroda, Gujarat. Target sample for pilot was selected after cluster census. Around half the mothers reported that they had not yet introduced water or other fluids to their < 6 month babies. However, about a third were already feeding them food other than mother’s milk. Although complementary feeding was initiated in almost all (95%) children more than 6 months old, frequency was suboptimal in 60%; in 80% cases no measure was taken to either improve energy or nutrient density; only 33% were fed protective foods; Green Leafy Vegetables consumption was negligible (1.4%). Anganwadi food was not consumed. By engaging ordinary people to generate evidence and understand the gaps, such assessments have the potential to be used to generate useful evidence for action at scale as well as locally.Keywords: citizen led, grass root engagement, IYCF (Infant and Young Child Feeding), rapid diet assessment, under nutrition
Procedia PDF Downloads 173522 Formation Control for Linear Multi-Robot System with Switched Directed Topology and Time-Varying Delays
Authors: Yaxiao Zhang, Yangzhou Chen
Abstract:
This study investigate the formation problem for high-order continuous-time multi-robot with bounded symmetric time-varying delay protocol under switched directed communication topology. By using a linear transformation, the formation problem is transformed to stability analysis of a switched delay system. Under the assumption that each communication topology has a directed spanning tree, sufficient conditions are presented in terms of linear matrix inequalities (LMIs) that the multi-robot system can achieve a desired formation by the trade-off among the pre-exist topologies with the help of the scheme of average dwell time. A numeral example is presented to illustrate the effectiveness of the obtained results.Keywords: multi-robot systems, formation, switched directed topology, symmetric time-varying delay, average dwell time, linear matrix inequalities (lmis)
Procedia PDF Downloads 535521 Development of Innovative Islamic Web Applications
Authors: Farrukh Shahzad
Abstract:
The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh
Procedia PDF Downloads 285520 Image Compression on Region of Interest Based on SPIHT Algorithm
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.Keywords: Compression ratio, DWT, SPIHT, DCT
Procedia PDF Downloads 349519 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 119518 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis
Authors: Fengmei Li, Li Xu, Guoliang Xia
Abstract:
Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein
Procedia PDF Downloads 357517 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK
Authors: Mais Khader, Xingjie Wei
Abstract:
This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.Keywords: company survival, entrepreneurship, females, machine learning, SMEs
Procedia PDF Downloads 101516 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 91515 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 298