Search results for: neural progentor cells
4092 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks
Authors: Hwayeon Song
Abstract:
The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect
Procedia PDF Downloads 2474091 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 474090 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry
Procedia PDF Downloads 3644089 Acoustic Blood Plasmapheresis in Polymeric Resonators
Authors: Itziar Gonzalez, Pilar Carreras, Alberto Pinto, Roque Ruben Andres
Abstract:
Acoustophoretic separation of plasma from blood is based on a collection process of the blood cells, driven by an acoustic radiation force. The number of cells, their concentration, and the sample hydrodynamics are involved in these processes. However, their influence on the acoustic blood response has not yet been reported in the literature. Addressing it, this paper presents an experimental study of blood samples exposed to ultrasonic standing waves at different hematocrit levels and hydrodynamic conditions. The experiments were performed in a glass capillary (700µm-square cross section) actuated by a piezoelectric ceramic at 1MHz, hosting 2D orthogonal half-wavelength resonances transverse to the channel length, with a single-pressure-node along its central axis where cells collected driven by the acoustic radiation force. Four blood dilutions in PBS of 1:20, 1:10, 1:5, and 1:2 were tested at eight flow rate conditions Q=0:120µL/min. The 1:5 dilution (H=9%) demonstrated to be optimal for the plasmapheresis at any of the flow rates analyzed, requiring the shortest times to achieve plasma free of cells. The study opens new possibilities to optimize processes of plasmapheresis processes by ultrasounds at different hematocrit conditions in future personalized diagnoses/treatments involving blood samples.Keywords: ultrasounds, microfluidics, flow rate, acoustophoresis, polymeric resonators
Procedia PDF Downloads 1364088 Surface Adjustments for Endothelialization of Decellularized Porcine Pericardium
Authors: M. Markova, E. Filova, O. Kaplan, R. Matejka, L. Bacakova
Abstract:
The porcine pericardium is used as a material for cardiac and aortic valves substitutes. Current biological aortic heart valve prosthesis have a limited lifetime period because they undergo degeneration. In order to make them more biocompatible and prolong their lifetime it is necessary to reseed the decellularized prostheses with endothelial cells and with valve interstitial cells. The endothelialization of the prosthesis-surface may be supported by suitable chemical surface modification of the prosthesis. The aim of this study is to prepare bioactive fibrin layers which would both support endothelialization of porcine pericardium and enhance differentiation and maturation of the endothelial cells seeded. As a material for surface adjustments we used layers of fibrin with/without heparin and some of them with adsorbed or chemically bound FGF2, VEGF or their combination. Fibrin assemblies were prepared in 24-well cell culture plate and were seeded with HSVEC (Human Saphenous Vein Endothelial Cells) at a density of 20,000 cells per well in EGM-2 medium with 0.5% FS and without heparin, without FGF2 and without VEGF; medium was supplemented with aprotinin (200 U/mL). As a control, surface polystyrene (PS) was used. Fibrin was also used as homogeneous impregnation of the decellularized porcine pericardium throughout the scaffolds. Morphology, density, and viability of the seeded endothelial cells were observed from micrographs after staining the samples by LIVE/DEAD cytotoxicity/viability assay kit on the days 1, 3, and 7. Endothelial cells were immunocytochemically stained for proteins involved in cell adhesion, i.e. alphaV integrin, vinculin, and VE-cadherin, markers of endothelial cells differentiation and maturation, i.e. von Willebrand factor and CD31, and for extracellular matrix proteins typically produced by endothelial cells, i.e. type IV collagen and laminin. The staining intensities were subsequently quantified using a software. HSVEC cells grew on each of the prepared surfaces better than on control surface. They reached confluency. The highest cell densities were obtained on the surface of fibrin with heparin and both grow factors used together. Intensity of alphaV integrins staining was highest on samples with remained fibrin layer, i.e. on layers with lower cell densities, i.e. on fibrin without heparin. Vinculin staining was apparent, but was rather diffuse, on fibrin with both FGF2 and VEGF and on control PS. Endothelial cells on all samples were positively stained for von Willebrand factor and CD31. VE-cadherin receptors clusters were best developed on fibrin with heparin and growth factors. Significantly stronger staining of type IV collagen was observed on fibrin with heparin and both growth factors. Endothelial cells on all samples produced laminin-1. Decellularized pericardium was homogeneously filled with fibrin structures. These fibrin-modified pericardium samples will be further seeded with cells and cultured in a bioreactor. Fibrin layers with/without heparin and with adsorbed or chemically bound FGF2, VEGF or their combination are good surfaces for endothelialization of cardiovascular prostheses or porcine pericardium based heart valves. Supported by the Ministry of Health, grants No15-29153A and 15-32497A, and the Grant Agency of the Czech Republic, project No. P108/12/G108.Keywords: aortic valves prosthesis, FGF2, heparin, HSVEC cells, VEGF
Procedia PDF Downloads 2654087 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells
Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani
Abstract:
Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade
Procedia PDF Downloads 4254086 Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death
Authors: Benjaporn Buranrat, Nootchanat Mairuae
Abstract:
Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy.Keywords: cratoxylum formosum (jack) dyer, breast cancer, liver cancer, cell death
Procedia PDF Downloads 2114085 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network
Procedia PDF Downloads 4694084 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1154083 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).Keywords: neural computing, human machine interation, artificial general intelligence, decision processing
Procedia PDF Downloads 1254082 Correlation of Leptin with Clinico-Pathological Features of Breast Cancer
Authors: Saad Al-Shibli, Nasser Amjad, Muna Al Kubaisi, Norra Harun, Shaikh Mizan
Abstract:
Leptin is a multifunctional hormone produced mainly by adipocyte. Leptin and its receptor have long been found associated with breast cancer. The main aim of this study is to investigate the correlation between Leptin/Leptin receptor and the clinicopathological features of breast cancer. Blood samples for ELISA, tissue samples from tumors and adjacent breast tissue were taken from 51 women with breast cancer with a control group of 40 women with a negative mammogram. Leptin and Leptin receptor in the tissues were estimated by immunohistochemistry (IHC). They were localized at the subcellular level by immunocytochemistry using transmission electron microscopy (TEM). Our results showed significant difference in serum leptin level between control and the patient group, but no difference between pre and post-operative serum leptin levels in the patient group. By IHC, we found that the majority of the breast cancer cells studied, stained positively for leptin and leptin receptors with co-expression of leptin and its receptors. No significant correlation was found between leptin/leptin receptors expression with the race, menopausal status, lymph node metastasis, estrogen receptor expression, progesterone receptor expression, HER2 expression and tumor size. Majority of the patients with distant metastasis were associated with high leptin and leptin receptor expression. TEM views both Leptin and Leptin receptor were found highly concentrated within and around the nucleus of the cancer breast cells, indicating nucleus is their principal seat of actions while the adjacent breast epithelial cells showed that leptin gold particles are scattered all over the cell with much less than that of the cancerous cells. However, presence of high concentration of leptin does not necessarily prove its over-expression, because it could be internalized from outside by leptin receptor in the cells. In contrast, leptin receptor is definitely over-expressed in the ductal breast cancer cells. We conclude that reducing leptin levels, blocking its downstream tissue specific signal transduction, and/or blocking the upstream leptin receptor pathway might help in prevention and therapy of breast cancer.Keywords: breast cancer, expression, leptin, leptin receptors
Procedia PDF Downloads 1404081 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1024080 An in silico Approach for Exploring the Intercellular Communication in Cancer Cells
Authors: M. Cardenas-Garcia, P. P. Gonzalez-Perez
Abstract:
Intercellular communication is a necessary condition for cellular functions and it allows a group of cells to survive as a population. Throughout this interaction, the cells work in a coordinated and collaborative way which facilitates their survival. In the case of cancerous cells, these take advantage of intercellular communication to preserve their malignancy, since through these physical unions they can send signs of malignancy. The Wnt/β-catenin signaling pathway plays an important role in the formation of intercellular communications, being also involved in a large number of cellular processes such as proliferation, differentiation, adhesion, cell survival, and cell death. The modeling and simulation of cellular signaling systems have found valuable support in a wide range of modeling approaches, which cover a wide spectrum ranging from mathematical models; e.g., ordinary differential equations, statistical methods, and numerical methods– to computational models; e.g., process algebra for modeling behavior and variation in molecular systems. Based on these models, different simulation tools have been developed from mathematical ones to computational ones. Regarding cellular and molecular processes in cancer, its study has also found a valuable support in different simulation tools that, covering a spectrum as mentioned above, have allowed the in silico experimentation of this phenomenon at the cellular and molecular level. In this work, we simulate and explore the complex interaction patterns of intercellular communication in cancer cells using the Cellulat bioinformatics tool, a computational simulation tool developed by us and motivated by two key elements: 1) a biochemically inspired model of self-organizing coordination in tuple spaces, and 2) the Gillespie’s algorithm, a stochastic simulation algorithm typically used to mimic systems of chemical/biochemical reactions in an efficient and accurate way. The main idea behind the Cellulat simulation tool is to provide an in silico experimentation environment that complements and guides in vitro experimentation in intra and intercellular signaling networks. Unlike most of the cell signaling simulation tools, such as E-Cell, BetaWB and Cell Illustrator which provides abstractions to model only intracellular behavior, Cellulat is appropriate for modeling both intracellular signaling and intercellular communication, providing the abstractions required to model –and as a result, simulate– the interaction mechanisms that involve two or more cells, that is essential in the scenario discussed in this work. During the development of this work we made evident the application of our computational simulation tool (Cellulat) for the modeling and simulation of intercellular communication between normal and cancerous cells, and in this way, propose key molecules that may prevent the arrival of malignant signals to the cells that surround the tumor cells. In this manner, we could identify the significant role that has the Wnt/β-catenin signaling pathway in cellular communication, and therefore, in the dissemination of cancer cells. We verified, using in silico experiments, how the inhibition of this signaling pathway prevents that the cells that surround a cancerous cell are transformed.Keywords: cancer cells, in silico approach, intercellular communication, key molecules, modeling and simulation
Procedia PDF Downloads 2494079 miR-200c as a Biomarker for 5-FU Chemosensitivity in Colorectal Cancer
Authors: Rezvan Najafi, Korosh Heydari, Massoud Saidijam
Abstract:
5-FU is a chemotherapeutic agent that has been used in colorectal cancer (CRC) treatment. However, it is usually associated with the acquired resistance, which decreases the therapeutic effects of 5-FU. miR-200c is involved in chemotherapeutic drug resistance, but its mechanism is not fully understood. In this study, the effect of inhibition of miR-200c in sensitivity of HCT-116 CRC cells to 5-FU was evaluated. HCT-116 cells were transfected with LNA-anti- miR-200c for 48 h. mRNA expression of miR-200c was evaluated using quantitative real- time PCR. The protein expression of phosphatase and tensin homolog (PTEN) and E-cadherin were analyzed by western blotting. Annexin V and propidium iodide staining assay were applied for apoptosis detection. The caspase-3 activation was evaluated by an enzymatic assay. The results showed LNA-anti-miR-200c inhibited the expression of PTEN and E-cadherin protein, apoptosis and activation of caspase 3 compared with control cells. In conclusion, these results suggest that miR-200c as a prognostic marker can overcome to 5-FU chemoresistance in CRC.Keywords: colorectal cancer, miR-200c, 5-FU resistance, E-cadherin, PTEN
Procedia PDF Downloads 1664078 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius
Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady
Abstract:
Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius
Procedia PDF Downloads 2534077 Role of Nano Gelatin and Hydrogel Based Scaffolds in Odontogenic Differentiation of Human Dental Pulp Stem Cells
Authors: Husain S. Yawer, Vasim Raja Panwar, Nidhi Priya
Abstract:
The objective of this study is to evaluate and compare the role of nano-gelatin and Bioengineered Scaffolds on the attachment, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSCs). Tooth decay and early fall have each been one of the most prevailing dental disorders which cause physical and emotional suffering and compromise the patient's quality of life. The design of novel scaffolding materials will be based on mimicking the architecture of natural dental extracellular matrix which may provide as in vivo environments for proper cell growth. This methodology will involve the combination of nano-fibred gelatin as well as biodegradable hydrogel based tooth scaffold. We have measured and optimized the Dental Pulp Stem Cells growth profile in cultures carried out on collagen-coated plastic surface, however, for tissue regeneration study, we aim to develop an enhanced microenvironment for stem cell growth and dental tissue regeneration. We believe biomimetic cell adhesion and scaffolds might provide a near in vivo growth environment for proper growth and differentiation of human DPSCs, which further help in dentin/pulp tissue regeneration.Keywords: nano-gelatin, stem cells, dental pulp, scaffold
Procedia PDF Downloads 3304076 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 674075 Democracy in Gaming: An Artificial Neural Network Based Approach towards Rule Evolution
Authors: Nelvin Joseph, K. Krishna Milan Rao, Praveen Dwarakanath
Abstract:
The explosive growth of Smart phones around the world has led to the shift of the primary engagement tool for entertainment from traditional consoles and music players to an all integrated device. Augmented Reality is the next big shift in bringing in a new dimension to the play. The paper explores the construct and working of the community engine in Delta T – an Augmented Reality game that allows users to evolve rules in the game basis collective bargaining mirroring democracy even in a gaming world.Keywords: augmented reality, artificial neural networks, mobile application, human computer interaction, community engine
Procedia PDF Downloads 3324074 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study
Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar
Abstract:
In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs
Procedia PDF Downloads 1774073 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level
Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti
Abstract:
The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor
Procedia PDF Downloads 2804072 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3414071 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules
Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas
Abstract:
Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling
Procedia PDF Downloads 2134070 Electrospinning of Nanofibrous Meshes and Surface-Modification for Biomedical Application
Authors: Hyuk Sang Yoo, Young Ju Son, Wei Mao, Myung Gu Kang, Sol Lee
Abstract:
Biomedical applications of electrospun nanofibrous meshes have been received tremendous attentions because of their unique structures and versatilities as biomaterials. Incorporation of growth factors in fibrous meshes can be performed by surface-modification and encapsulation. Those growth factors stimulate differentiation and proliferation of specific types of cells and thus lead tissue regenerations of specific cell types. Topographical cues of electrospun nanofibrous meshes also increase differentiation of specific cell types according to alignments of fibrous structures. Wound healing treatments of diabetic ulcers were performed using nanofibrous meshes encapsulating multiple growth factors. Aligned nanofibrous meshes and those with random configuration were compared for differentiating mesenchymal stem cells into neuronal cells. Thus, nanofibrous meshes can be applied to drug delivery carriers and matrix for promoting cellular proliferation.Keywords: nanofiber, tissue, mesh, drug
Procedia PDF Downloads 3394069 Evaluation of Cytotoxic Effect of Mitoxantrone Conjugated Magnetite Nanoparticles and Graphene Oxide-Magnetite Nanocomposites on Mesenchymal Stem Cells
Authors: Abbas Jafarizad, Duygu Ekinci
Abstract:
In this work targeted drug delivery is proposed to decrease adverse effect of drugs with concomitant reduces in consumption and treatment outgoings. Nanoparticles (NPs) can be prepared from a variety of materials such as lipid, biodegradable polymer that prevent the drugs cytotoxicity in healthy cells, etc. One of the most important drugs used in chemotherapy is mitoxantrone (MTX) which prevents cell proliferation by inhibition of topoisomerase II and DNA repair; however, it is not selective and has some serious side effects. In this study, mentioned aim is achieved by using several nanocarriers like magnetite (Fe3O4) and their composites with magnetic graphene oxide (Fe3O4@GO). Also, cytotoxic potential of Fe3O4, Fe3O4-MTX, and Fe3O4@GO-MTX nanocomposite were evaluated on mesenchymal stem cells (MSCs). In this study, we reported the synthesis of monodisperse Fe3O4 NPs and Fe3O4@GO nanocomposite and their structures were investigated by using field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM), Brauneur Emmet Teller (BET) isotherm and contact angle studies. Moreover, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate cytotoxic effects of MTX, Fe3O4 NPs, Fe3O4-MTX and Fe3O4@GO-MTX nanocomposite on MSCs. The in-vitro MTT results indicated that all concentrations of MTX and Fe3O4@GO-MTX nanocomposites showed cytotoxic effects while all concentrations of Fe3O4 NPs and Fe3O4-MTX NPs did not show any cytotoxic effect on stem cells. The results from this study indicated that using Fe3O4 NPs as anticancer drug delivery systems could be a trustworthy method for cancer treatment. But for reaching excellent and accurate results, further investigation is necessary.Keywords: mitoxantrone, magnetite, magnetic graphene oxide, MTT assay, mesenchymal stem cells
Procedia PDF Downloads 2724068 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells
Authors: S. Pradhan, D. Pradhan, G. Tripathy
Abstract:
Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells
Procedia PDF Downloads 3114067 Immunomodulatory Effect of Deer Antler Extract
Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim
Abstract:
Velvet antler (VA), the immature antlers of male deer, is traditionally used for thousands of years in Asian countries, such as Korea, China, Taiwan, and Mongolia. It has been considered to improve immune system and physical strength. The goal of this study was to investigate the immunomodulatory effect of deer antler velvet using in vitro system. In the first step, the effects of VA (70% ethanol extract) on the proliferation of splenocytes, bone marrow cell, and macrophages were determined. Next, the effect of VA on the production of nitric oxide and phagocytic activity in macrophage were measured. The results showed that VA treatment increased concanavalin-A stimulated splenocyte, bone marrow cells, and macrophage proliferation in a dose dependent manner. VA at 50 and 100 ug/mL concentrations significantly enhanced the concanavalin-A stimulated splenocyte proliferation by 8.8% and 18.5%, respectively. The proliferation of bone marrow cells, isolated from 5wk-old ICR mice, were increased by 25.2% and 46.5% by 50 and 100 ug/mL VA treatment. RAW 264.7 cell proliferation reached peak value at 50 ug/mL of VA treatment exhibiting 108% of the basal value. Nitric oxide production by RAW 264.7 macrophage cells was slightly reduced by VA treatment but was not statistically significant. Moreover, the phagocytic activity of macrophages was enhanced by VA treatment. These results indicate that VA is effective in immune system.Keywords: deer antler, splenocyte, bone marrow cells, macrophage proliferation, phagocytosis
Procedia PDF Downloads 2724066 Study on the Transition to Pacemaker of Two Coupled Neurons
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity
Procedia PDF Downloads 2844065 A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation
Authors: Abul B. M. M. K. Islam, Mandar Dave, Roderick V. Jensen, Ashok R. Amin
Abstract:
A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress.Keywords: cyclooxygenases, inflammation, lung fibroblasts, systemic
Procedia PDF Downloads 2924064 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 164063 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion
Authors: Shangerganesh Lingeshwaran
Abstract:
In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method
Procedia PDF Downloads 232