Search results for: multi-objective linear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4057

Search results for: multi-objective linear programming

3217 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 171
3216 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.

Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization

Procedia PDF Downloads 122
3215 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control

Procedia PDF Downloads 127
3214 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network

Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram

Abstract:

The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.

Keywords: VAWT, ANN, optimization, inverse design

Procedia PDF Downloads 307
3213 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities

Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani

Abstract:

All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.

Keywords: facility location, multi-objective model, disaster response, commodity

Procedia PDF Downloads 248
3212 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser

Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou

Abstract:

The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.

Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift

Procedia PDF Downloads 92
3211 Entropy Analysis of a Thermo-Acoustic Stack

Authors: Ahmadali Shirazytabar, Hamidreza Namazi

Abstract:

The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation.

Keywords: thermo-acoustics, entropy, second law of thermodynamics, Rott’s linear thermo-acoustic approximation

Procedia PDF Downloads 388
3210 Localization of Near Field Radio Controlled Unintended Emitting Sources

Authors: Nurbanu Guzey, S. Jagannathan

Abstract:

Locating radio controlled (RC) devices using their unintended emissions has a great interest considering security concerns. Weak nature of these emissions requires near field localization approach since it is hard to detect these signals in far field region of array. Instead of only angle estimation, near field localization also requires range estimation of the source which makes this method more complicated than far field models. Challenges of locating such devices in a near field region and real time environment are analyzed in this paper. An ESPRIT like near field localization scheme is utilized for both angle and range estimation. 1-D search with symmetric subarrays is provided. Two 7 element uniform linear antenna arrays (ULA) are employed for locating RC source. Experiment results of location estimation for one unintended emitting walkie-talkie for different positions are given.

Keywords: localization, angle of arrival (AoA), range estimation, array signal processing, ESPRIT, Uniform Linear Array (ULA)

Procedia PDF Downloads 514
3209 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing

Authors: Kedar Hardikar, Joe Varghese

Abstract:

Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applications

Keywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.

Procedia PDF Downloads 120
3208 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 429
3207 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.

Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning

Procedia PDF Downloads 143
3206 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization

Procedia PDF Downloads 249
3205 Time-Dependent Analysis of Composite Steel-Concrete Beams Subjected to Shrinkage

Authors: Rahal Nacer, Beghdad Houda, Tehami Mohamed, Souici Abdelaziz

Abstract:

Although the shrinkage of the concrete causes undesirable parasitic effects to the structure, it can then harm the resistance and the good appearance of the structure. Long term behaviourmodelling of steel-concrete composite beams requires the use of the time variable and the taking into account of all the sustained stress history of the concrete slab constituting the cross section. The work introduced in this article is a theoretical study of the behaviour of composite beams with respect to the phenomenon of concrete shrinkage. While using the theory of the linear viscoelasticity of the concrete, and on the basis of the rate of creep method, in proposing an analytical model, made up by a system of two linear differential equations, emphasizing the effects caused by shrinkage on the resistance of a steel-concrete composite beams. Results obtained from the application of the suggested model to a steel-concrete composite beam are satisfactory.

Keywords: composite beams, shrinkage, time, rate of creep method, viscoelasticity theory

Procedia PDF Downloads 510
3204 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop

Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj

Abstract:

In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.

Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.

Procedia PDF Downloads 507
3203 Surface Sensing of Atomic Behavior of Polymer Nanofilms via Molecular Dynamics Simulation

Authors: Ling Dai

Abstract:

Surface-sensing devices such as atomic force microscope have been widely used to characterize the surface structure and properties of nanoscale polymer films. However, using molecular dynamics simulations, we show that there is intrinsic and unavoidable inelastic deformation at polymer surfaces induced by the sensing tip. For linear chain polymers like perfluoropolyether, such tip-induced deformation derives from the differences in the atomic interactions which are atomic specie-based Van der Waals interactions, and resulting in atomic shuffling and causing inelastic alternation in both molecular structures and mechanical properties at the regions of the polymer surface. For those aromatic chain polymers like epoxy, the intrinsic deformation is depicted as the intra-chain rotation of aromatic rings and kinking of linear atomic connections. The present work highlights the need to reinterpret the data obtained from surface-sensing tests by considering this intrinsic inelastic deformation occurring at polymer surfaces.

Keywords: polymer, surface, nano, molecular dynamics

Procedia PDF Downloads 342
3202 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow

Procedia PDF Downloads 339
3201 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 248
3200 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes

Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi

Abstract:

Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.

Keywords: bergman model, nonlinear control, back stepping, sliding mode control

Procedia PDF Downloads 370
3199 Channel Characteristics and Morphometry of a Part of Umtrew River, Meghalaya

Authors: Pratyashi Phukan, Ranjan Saikia

Abstract:

Morphometry incorporates quantitative study of the area ,altitude,volume, slope profiles of a land and drainage basin characteristics of the area concerned.Fluvial geomorphology includes the consideration of linear,areal and relief aspects of a fluvially originated drainage basin. The linear aspect deals with the hierarchical orders of streams, numbers, and lenghts of stream segments and various relationship among them.The areal aspect includes the analysis of basin perimeters,basin shape, basin area, and related morphometric laws. The relief aspect incorporates besides hypsometric, climographic and altimetric analysis,the study of absolute and relative reliefs, relief ratios, average slope, etc. In this paper we have analysed the relationship among stream velocity, channel shape,sediment load,channel width,channel depth, etc.

Keywords: morphometry, hydraulic geometry, Umtrew river, Meghalaya

Procedia PDF Downloads 444
3198 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 113
3197 Prediction of B-Cell Epitope for 24 Mite Allergens: An in Silico Approach towards Epitope-Based Immune Therapeutics

Authors: Narjes Ebrahimi, Soheila Alyasin, Navid Nezafat, Hossein Esmailzadeh, Younes Ghasemi, Seyed Hesamodin Nabavizadeh

Abstract:

Immunotherapy with allergy vaccines is of great importance in allergen-specific immunotherapy. In recent years, B-cell epitope-based vaccines have attracted considerable attention and the prediction of epitopes is crucial to design these types of allergy vaccines. B-cell epitopes might be linear or conformational. The prerequisite for the identification of conformational epitopes is the information about allergens' tertiary structures. Bioinformatics approaches have paved the way towards the design of epitope-based allergy vaccines through the prediction of tertiary structures and epitopes. Mite allergens are one of the major allergy contributors. Several mite allergens can elicit allergic reactions; however, their structures and epitopes are not well established. So, B-cell epitopes of various groups of mite allergens (24 allergens in 6 allergen groups) were predicted in the present work. Tertiary structures of 17 allergens with unknown structure were predicted and refined with RaptorX and GalaxyRefine servers, respectively. The predicted structures were further evaluated by Rampage, ProSA-web, ERRAT and Verify 3D servers. Linear and conformational B-cell epitopes were identified with Ellipro, Bcepred, and DiscoTope 2 servers. To improve the accuracy level, consensus epitopes were selected. Fifty-four conformational and 133 linear consensus epitopes were predicted. Furthermore, overlapping epitopes in each allergen group were defined, following the sequence alignment of the allergens in each group. The predicted epitopes were also compared with the experimentally identified epitopes. The presented results provide valuable information for further studies about allergy vaccine design.

Keywords: B-cell epitope, Immunotherapy, In silico prediction, Mite allergens, Tertiary structure

Procedia PDF Downloads 149
3196 The Inclusion of the Cabbage Waste in Buffalo Ration Made of Sugarcane Waste and Its Effect on Characteristics of the Silage

Authors: Adrizal, Irsan Ryanto, Sri Juwita, Adika Sugara, Tino Bapirco

Abstract:

The objective of the research was to study the influence of the inclusion of the cabbage waste into a buffalo rations made of sugarcane waste on the feed formula and characteristic of complete feed silage. Research carried out a two-stage i.e. the feed formulation and experiment of making complete feed silage. Feed formulation is done by linear programming. Data input is the price of feed stuffs and their nutrient contents as well as requirements for rations, while the output is the use of each feed stuff and the price of complete feed. The experiment of complete feed silage was done by a completely random design 4 x 4. The treatments were 4 inclusion levels of the cabbage waste i.e. 0%,(T1) 5%(T2), 10%(T3) and 15% (T4), with 4 replications. The result of feed formulation for T1 was cabbage (0%), sugarcane top (17.9%), bagasse (33.3%), Molasses (5.0%), cabagge (0%), Thitonia sp (10.0%), rice brand (2.7%), palm kernel cake (20.0%), corn meal (9.1%), bond meal (1.5%) and salt (0.5%). The formula of T2 was cabagge (5%), sugarcane top (1.7%), bagasse (45.2%), Molasses (5.0%), , Thitonia sp (10.0%), rice brand (3.6%), palm kernel cake (20.0%), corn meal (7.5%), bond meal (1.5%) and salt (0.5%). The formula of T3 was cabbage (10%), sugarcane top (0%), bagasse (45.3%), Molasses (5.0%), Thitonia sp (10.0%), rice brand (3.8%), palm kernel cake (20.0%), corn meal (3.9%), bond meal (1.5%) and salt(0.5%). The formula of T4 was cabagge (15.0%), sugarcane top (0%), bagasse (44.1%), Molasses (5.0%), Thitonia sp (10.0%), rice brand (3.9%), palm kernel cake (20.0%), corn meal (0%), bond meal (1.5%) and salt (0.5%). An increase in the level of inclusion of the cabbage waste can decrease the cost of rations. The cost of rations (IDR/kg on DM basis) were 1442, 1367, 1333, and 1300 respectively. The rations formula were not significantly (P > 0.05) influent the on fungal colonies, smell, texture and color of the complete ration silage, but the pH increased significantly (P < 0.05). It concluded that inclusion of cabbage waste can minimize the cost of buffalo ration, without decreasing the silage quality of complete feed.

Keywords: buffalo, cabbage, complete feed, sillage characteristic, sugarcane waste

Procedia PDF Downloads 244
3195 Connecting the Dots: Bridging Academia and National Community Partnerships When Delivering Healthy Relationships Programming

Authors: Nicole Vlasman, Karamjeet Dhillon

Abstract:

Over the past four years, the Healthy Relationships Program has been delivered in community organizations and schools across Canada. More than 240 groups have been facilitated in collaboration with 33 organizations. As a result, 2157 youth have been engaged in the programming. The purpose and scope of the Healthy Relationships Program are to offer sustainable, evidence-based skills through small group implementation to prevent violence and promote positive, healthy relationships in youth. The program development has included extensive networking at regional and national levels. The Healthy Relationships Program is currently being implemented, adapted, and researched within the Resilience and Inclusion through Strengthening and Enhancing Relationships (RISE-R) project. Alongside the project’s research objectives, the RISE-R team has worked to virtually share the ongoing findings of the project through a slow ontology approach. Slow ontology is a practice integrated into project systems and structures whereby slowing the pace and volume of outputs offers creative opportunities. Creative production reveals different layers of success and complements the project, the building blocks for sustainability. As a result of integrating a slow ontology approach, the RISE-R team has developed a Geographic Information System (GIS) that documents local landscapes through a Story Map feature, and more specifically, video installations. Video installations capture the cartography of space and place within the context of singular diverse community spaces (case studies). By documenting spaces via human connections, the project captures narratives, which further enhance the voices and faces of the community within the larger project scope. This GIS project aims to create a visual and interactive flow of information that complements the project's mixed-method research approach. Conclusively, creative project development in the form of a geographic information system can provide learning and engagement opportunities at many levels (i.e., within community organizations and educational spaces or with the general public). In each of these disconnected spaces, fragmented stories are connected through a visual display of project outputs. A slow ontology practice within the context of the RISE-R project documents activities on the fringes and within internal structures; primarily through documenting project successes as further contributions to the Centre for School Mental Health framework (philosophy, recruitment techniques, allocation of resources and time, and a shared commitment to evidence-based products).

Keywords: community programming, geographic information system, project development, project management, qualitative, slow ontology

Procedia PDF Downloads 144
3194 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: super harmonic resonances, non-linear vibration, axially moving beam, Galerkin method

Procedia PDF Downloads 380
3193 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 405
3192 Framework for Incorporating Environmental Performance in Network-Level Pavement Maintenance Program

Authors: Jessica Achebe, Susan Tighe

Abstract:

The reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to an optimal allocation of resources and reduced road user cost. This is the essence of incorporating environmental sustainability into pavement management. The functionality of performance measurement approach has made it one of the most valuable tool to Pavement Management Systems (PMSs) to account for different criteria in the decision-making process. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this paper present the first step, the intention is to review the previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for network-level sustainable maintenance and rehabilitation programming.

Keywords: pavement management, environment sustainability, network-level evaluation, performance measures

Procedia PDF Downloads 295
3191 Investigating Physician-Induced Demand among Mental Patients in East Azerbaijan, Iran: A Multilevel Approach of Hierarchical Linear Modeling

Authors: Hossein Panahi, Firouz Fallahi, Sima Nasibparast

Abstract:

Background & Aim: Unnecessary growth in health expenditures of developing countries in recent decades, and also the importance of physicians’ behavior in health market, have made the theory of physician-induced demand (PID) as one of the most important issues in health economics. Therefore, the main objective of this study is to investigate the hypothesis of induced demand among mental patients who receive services from either psychologists or psychiatrists in East Azerbaijan province. Methods: Using data from questionnaires in 2020 and employing the theoretical model of Jaegher and Jegers (2000) and hierarchical linear modeling (HLM), this study examines the PID hypothesis of selected psychologists and psychiatrists. The sample size of the study, after removing the questionnaires with missing data, is 45 psychologists and 203 people of their patients, as well as 30 psychiatrists and 160 people of their patients. Results: The results show that, although psychiatrists are ‘profit-oriented physicians’, there is no evidence of inducing unnecessary demand by them (PID), and the difference between the behavior of employers and employee doctors is due to differences in practice style. However, with regard to psychologists, the results indicate that they are ‘profit-oriented’, and there is a PID effect in this sector. Conclusion: According to the results, it is suggested that in order to reduce competition and eliminate the PID effect, the admission of students in the field of psychology should be reduced, patient information on mental illness should be increased, and government monitoring and control over the national health system must be increased.

Keywords: physician-induced demand, national health system, hierarchical linear modeling methods, multilevel modela

Procedia PDF Downloads 124
3190 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops

Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan

Abstract:

In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.

Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis

Procedia PDF Downloads 362
3189 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance

Authors: Benmalek M. Larbi, R. Harbi, S. Boukor

Abstract:

This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.

Keywords: clay brick waste, mortar, properties, quarry sand

Procedia PDF Downloads 241
3188 Effect of Reinforcement Density on the Behaviour of Reinforced Sand Under a Square Footing

Authors: Dhyaalddin Bahaalddin Noori Zangana

Abstract:

This study involves the behavior of reinforced sand under a square footing. A series of bearing capacity tests were performed on a small-scale laboratory model, which filled with a poorly-graded homogenous bed of sand, which was placed in a medium dense state using sand raining technique. The sand was reinforced with 40 mm wide household aluminum foil strips. The main studied parameters was to consider the effect of reinforcing strip length, with various linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcement below the footing, on load-settlement behavior, bearing capacity ratio and settlement reduction factor. The relation of load-settlement generally showed similar trend in all the tests. Failure was defined as settlement equal to 10% of the footing width. The recommended optimum reinforcing strip length, linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcing strips that give the maximum bearing capacity improvement and minimum settlement reduction factor were presented and discussed. Different bearing capacity ration versus length of the reinforcing strips and settlement reduction factor versus length of the reinforcing strips relations at failure were showed improvement of bearing capacity ratio by a factor of 3.82 and reduction of settlement reduction factor by a factor of 0.813. The optimum length of reinforcement was found to be 7.5 times the footing width.

Keywords: square footing, relative density, linear density of reinforcement, bearing capacity ratio, load-settlement behaviour

Procedia PDF Downloads 86