Search results for: health behavior model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28130

Search results for: health behavior model

27290 A Time since of Injection Model for Hepatitis C Amongst People Who Inject Drugs

Authors: Nader Al-Rashidi, David Greenhalgh

Abstract:

Mathematical modelling techniques are now being used by health organizations worldwide to help understand the likely impact that intervention strategies treatment options and combinations of these have on the prevalence and incidence of hepatitis C virus (HCV) in the people who inject drugs (PWID) population. In this poster, we develop a deterministic, compartmental mathematical model to approximate the spread of the HCV in a PWID population that has been divided into two groups by time since onset of injection. The model assumes that after injection needles adopt the most infectious state of their previous state or that of the PWID who last injected with them. Using analytical techniques, we find that the model behaviour is determined by the basic reproductive number R₀, where R₀ = 1 is a critical threshold separating two different outcomes. The disease-free equilibrium is globally stable if R₀ ≤ 1 and unstable if R₀ > 1. Additionally, we make some simulations where have confirmed that the model tends to this endemic equilibrium value with realistic parameter values giving an HCV prevalence.

Keywords: hepatitis C, people who inject drugs, HCV, PWID

Procedia PDF Downloads 141
27289 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam

Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar

Abstract:

Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.

Keywords: FPZ, fracture, FRP, shear

Procedia PDF Downloads 531
27288 Use of Two-Dimensional Hydraulics Modeling for Design of Erosion Remedy

Authors: Ayoub. El Bourtali, Abdessamed.Najine, Amrou Moussa. Benmoussa

Abstract:

One of the main goals of river engineering is river training, which is defined as controlling and predicting the behavior of a river. It is taking effective measurements to eliminate all related risks and thus improve the river system. In some rivers, the riverbed continues to erode and degrade; therefore, equilibrium will never be reached. Generally, river geometric characteristics and riverbed erosion analysis are some of the most complex but critical topics in river engineering and sediment hydraulics; riverbank erosion is the second answering process in hydrodynamics, which has a major impact on the ecological chain and socio-economic process. This study aims to integrate the new computer technology that can analyze erosion and hydraulic problems through computer simulation and modeling. Choosing the right model remains a difficult and sensitive job for field engineers. This paper makes use of the 5.0.4 version of the HEC-RAS model. The river section is adopted according to the gauged station and the proximity of the adjustment. In this work, we will demonstrate how 2D hydraulic modeling helped clarify the design and cover visuals to set up depth and velocities at riverbanks and throughout advanced structures. The hydrologic engineering center's-river analysis system (HEC-RAS) 2D model was used to create a hydraulic study of the erosion model. The geometric data were generated from the 12.5-meter x 12.5-meter resolution digital elevation model. In addition to showing eroded or overturned river sections, the model output also shows patterns of riverbank changes, which can help us reduce problems caused by erosion.

Keywords: 2D hydraulics model, erosion, floodplain, hydrodynamic, HEC-RAS, riverbed erosion, river morphology, resolution digital data, sediment

Procedia PDF Downloads 184
27287 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature

Procedia PDF Downloads 68
27286 Insights on Behavior of Tunisian Auditors

Authors: Dammak Saida, Mbarek Sonia

Abstract:

This paper aims to examine the impact of public interest commitment, the attitude towards independence enforcement, and organizational ethical culture on auditors' ethical behavior. It also tests the moderating effect of gender diversity on these relationships. The sample consisted of 100 Tunisian chartered accountants. An online survey was used to collect the data. Data analysis techniques used to test hypotheses The findings of this study provide practical implications for accounting professionals, regulators, and audit firms as they help understand auditors' beliefs and behaviors, which implies more effective mechanisms for improving their ethical values.

Keywords: public interest, independence, organizational culture, professional behavior, Tunisian auditors

Procedia PDF Downloads 70
27285 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management

Authors: Berk Ecer, Ebru Akcapinar Sezer

Abstract:

Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.

Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach

Procedia PDF Downloads 131
27284 Thermodynamics during the Deconfining Phase Transition

Authors: Amal Ait El Djoudi

Abstract:

A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition.

Keywords: equation of state, thermodynamics, deconfining phase transition, quark–gluon plasma (QGP)

Procedia PDF Downloads 421
27283 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 420
27282 A Statistical Study on Young UAE Driver’s Behavior towards Road Safety

Authors: Sadia Afroza, Rakiba Rouf

Abstract:

Road safety and associated behaviors have received significant attention in recent years, reflecting general public concern. This paper portrays a statistical scenario of the young drivers in UAE with emphasis on various concern points of young driver’s behavior and license issuance. Although there are many factors contributing to road accidents, statistically it is evident that age plays a major role in road accidents. Despite ensuring strict road safety laws enforced by the UAE government, there is a staggering correlation among road accidents and young driver’s at UAE. However, private organizations like BMW and RoadSafetyUAE have extended its support on conducting surveys on driver’s behavior with an aim to ensure road safety. Various strategies such as road safety law enforcement, license issuance, adapting new technologies like safety cameras and raising awareness can be implemented to improve the road safety concerns among young drivers.

Keywords: driving behavior, Graduated Driver Licensing System (GLDS), road safety, UAE drivers, young drivers

Procedia PDF Downloads 254
27281 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 165
27280 Punching Shear Behavior of RC Column Footing on Stabilized Ground

Authors: Sukanta K. Shill, Md. M. Hoque, Md. Shaifullah

Abstract:

An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing.

Keywords: footing, punching shear, field condition, stabilized soil, brick aggregate

Procedia PDF Downloads 405
27279 A Theoretical Framework on International Voluntary Health Networks

Authors: Benet Reid, Nina Laurie, Matt Baillie-Smith

Abstract:

Trans-national and tropical medicine, historically associated with colonial power and missionary activity, is now central to discourses of global health and development, thrust into mainstream media by events like the 2014 Ebola crisis and enshrined in the Sustainable Development Goals. Research in this area remains primarily the province of health professional disciplines, and tends to be framed within a simple North-to-South model of development. The continued role of voluntary work in this field is bound up with a rhetoric of partnering and partnership. We propose, instead, the idea of International Voluntary Health Networks (IVHNs) as a means to de-centre global-North institutions in these debates. Drawing on our empirical work with IVHNs in countries both North and South, we explore geographical and sociological theories for mapping the multiple spatial and conceptual dynamics of power manifested in these phenomena. We make a radical break from conventional views of health as a de-politicised symptom or corollary of social development. In studying health work as it crosses between cultures and contexts, we demonstrate the inextricably political nature of health and health work everywhere.

Keywords: development, global health, power, volunteering

Procedia PDF Downloads 318
27278 Organizing Diabetes Care in a Resource Constrained Country: Bangladesh as an Example

Authors: Liaquat Ali, Khurshid Natasha

Abstract:

Low resource countries are not usually equipped with the organizational tools to implement health care for chronic diseases, and thus, providing effective diabetes care in such countries is a challenging task. Diabetic Association of Bangladesh (BADAS in Bengali acronym) has created a stimulating example to meet this challenge. Starting its journey in 1956 with 39 patients in a small tin shed clinic BADAS, and its affiliated associations now operate 90 hospitals and health centres all over the country. Together, these facilities provide integrated health care to about 1.5 million registered diabetic patients which constitute about 20% of the estimated diabetic population in the country. BADAS has also become a pioneer in health manpower generation in Bangladesh. Along with its affiliates, it now runs 3 Medical Colleges (to generate graduate physicians), 2 Nursing Institutes, and 2 Postgraduate Institutes which conduct 25 postgraduate courses (under the University of Dhaka) in various basic, clinical and public health disciplines. BADAS gives great emphasis on research, which encompasses basic, clinical as well as public health areas. BADAS is an ideal example of public-private partnership in health as most of its infrastructure has been created through government support but it is almost self-reliant in managing its revenue budget which approached approximately 40 million US dollar during 2010. BADAS raises resources by providing high-quality services to the people, both diabetic and non-diabetic. At the same time, BADAS has developed a cross financing model, to support diabetic patients in general and poor diabetic patients (identified through a social welfare network) in particular, through redistribution of the resources. Along with financial sustainability BADAS ensure organizational sustainability through a process of decentralization, community ownership, and democratic management. Presently a large scale pilot project (named as a Health Care Development Project or HCDP) is under implementation under BADAS umbrella with an objective to transform the diabetes care model to a health care model in general. It is expected to create further evidence on providing sustainable (with social safety net) health care delivery for diabetes, and other chronic illnesses as an integral part of general health care delivery in a resource constrained setting.

Keywords: Bangladesh, self sustain, health care, constrain

Procedia PDF Downloads 174
27277 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 179
27276 Understanding Consumer Behavior Towards Business Ethics: Is it Really Important for Consumers

Authors: Ömer Akkaya, Muammer Zerenler

Abstract:

Ethics is important for all shareholders and stakeholders that a firm has in its environment. Whether a firm behaves ethically or unethically has a significant influence on consumers’ decision making and buying process. This research tries to explain business ethics from consumers’ perspective. The survey includes several questions to explain how consumers react if they know a firm behave unethically or ethically. What are consumers’ expectations regarding the ethical behavior of firm? Do consumer reward or punish the firms considering the ethics? Does it really important for consumers firms behaving ethical?

Keywords: business ethics, consumer behavior, ethics, social responsibility

Procedia PDF Downloads 354
27275 Developing a Health Promotion Program to Prevent and Solve Problem of the Frailty Elderly in the Community

Authors: Kunthida Kulprateepunya, Napat Boontiam, Bunthita Phuasa, Chatsuda Kankayant, Bantoeng Polsawat, Sumran Poontong

Abstract:

Frailty is the thin line between good health and illness. The syndrome is more common in the elderly who transition from strong to weak. (Vulnerability). Fragility can prevent and promote healthy recovery before it goes into disability. This research and development aim to analyze the situation analysis of frailty of the elderly, develop a program, and evaluate the effect of a health promotion program to prevent and solve the problem of frailty among the elderly. The research consisted of 3 phases: 1) analysis of the frailty situation, 2) development of a model, 3) evaluation of the effectiveness of the model. Samples were 328, 122 elderlies using the multi-stage random sampling method. The research instrument was a frailty questionnaire use of the five symptoms, the main characteristics were muscle weakness, slow walking, low physical activity. Fatigue and unintentional weight loss, criteria frailty use more than or equal to three or more symptoms are frailty. Data were analyzed by descriptive and t-test dependent test statistics. The findings showed three parts. First, frailty in the elderly was 23.05 percentage and 56.70% pre-frailty. Second, it was development of a health promotion program to prevent and solve the problem of frailty the elderly with a combination of Nine-Square Exercise, Elastic Band Exercise, Elastic Coconut Shell. Third, evaluation of the effectiveness of the model by comparison of the elderly's get up and go test, the average time before using the program was 14.42 and after using the program was 8.57. It was statistically significant at the .05 level. In conclusion, the findings can used to develop guidelines to promote the health of the frailty elderly.

Keywords: elderly, fragile, nine-square exercise, elastic coconut shell

Procedia PDF Downloads 102
27274 Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading

Authors: Abdelghani May

Abstract:

This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material.

Keywords: microstructural investigation, fatigue damage quantification, anisotropic behavior, AA2017 aluminum alloy, cyclic loading, crystallographic texture, scanning electron microscopy

Procedia PDF Downloads 70
27273 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 360
27272 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel

Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci

Abstract:

316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.

Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna

Procedia PDF Downloads 317
27271 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima

Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano

Abstract:

In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.

Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time

Procedia PDF Downloads 158
27270 The Direct Drivers of Ethnocentric Consumer, Intention and Actual Purchasing Behavior in Malaysia

Authors: Nik Kamariah Nikmat, Noor Hasmini Abdghani

Abstract:

The Malaysian government had consistently revived its campaign for “Buy Malaysian Goods” from time to time. The purpose of the campaign is to remind consumers to be ethnocentric and patriotic when purchasing product and services. This is necessary to ensure high demand for local products and services compared to foreign products. However, the decline of domestic investment in 2012 has triggered concern for the Malaysian economy. Hence, this study attempts to determine the drivers of actual purchasing behavior, intention to purchase domestic products and ethnocentrism. The study employs the cross-sectional primary data, self-administered on household, selected using stratified random sampling in four Malaysian regions. A nine factor driver of actual domestic purchasing behavior (culture openness, conservatism, collectivism, patriotism, control belief, interest in foreign travel, attitude, ethnocentrism and intention) were measured utilizing 60 items, using 7-point Likert-scale. From 1000 questionnaires distributed, a sample of 486 were returned representing 48.6 percent response rate. From the fit generated structural model (SEM analysis), it was found that the drivers of actual purchase behavior are collectivism, cultural openness and patriotism; the drivers of intention to purchase domestic product are attitude, control belief, collectivism and conservativeness; and drivers of ethnocentrism are cultural openness, control belief, foreign travel and patriotism. It also shows that Malaysian consumers scored high in ethnocentrism and patriotism. The findings are discussed in the perspective of its implication to Malaysian National Agenda.

Keywords: actual purchase, ethnocentrism, patriotism, culture openness, conservatism

Procedia PDF Downloads 310
27269 Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics

Authors: J. Ismail, F. Zaïri, M. Naït-Abdelaziz, Z. Azari

Abstract:

In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor.

Keywords: finite element modeling, continuum damage mechanics, indentation, cracks

Procedia PDF Downloads 413
27268 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition

Procedia PDF Downloads 180
27267 Post-occupancy Evaluation of Greenway Based on Multi-source data : A Case Study of Jincheng Greenway in Chengdu

Authors: Qin Zhu

Abstract:

Under the development concept of Park City, Tianfu Greenway system, as the basic and pre-configuration element of Chengdu Global Park construction, connects urban open space with linear and circular structures and undertakes and exerts the ecological, cultural and recreational functions of the park system. Chengdu greenway construction is in full swing. In the process of greenway planning and construction, the landscape effect of greenway on urban quality improvement is more valued, and the long-term impact of crowd experience on the sustainable development of greenway is often ignored. Therefore, it is very important to test the effectiveness of greenway construction from the perspective of users. Taking Jincheng Greenway in Chengdu as an example, this paper attempts to introduce multi-source data to construct a post-occupancy evaluation model of greenway and adopts behavior mapping method, questionnaire survey method, web text analysis and IPA analysis method to comprehensively evaluate the user 's behavior characteristics and satisfaction. According to the evaluation results, we can grasp the actual behavior rules and comprehensive needs of users so that the experience of building greenways can be fed back in time and provide guidance for the optimization and improvement of built greenways and the planning and construction of future greenways.

Keywords: multi-source data, greenway, IPA analysis, post -occupancy evaluation (POE)

Procedia PDF Downloads 57
27266 An Alternative Stratified Cox Model for Correlated Variables in Infant Mortality

Authors: K. A. Adeleke

Abstract:

Often in epidemiological research, introducing stratified Cox model can account for the existence of interactions of some inherent factors with some major/noticeable factors. This research work aimed at modelling correlated variables in infant mortality with the existence of some inherent factors affecting the infant survival function. An alternative semiparametric Stratified Cox model is proposed with a view to take care of multilevel factors that have interactions with others. This, however, was used as a tool to model infant mortality data from Nigeria Demographic and Health Survey (NDHS) with some multilevel factors (Tetanus, Polio, and Breastfeeding) having correlation with main factors (Sex, Size, and Mode of Delivery). Asymptotic properties of the estimators are also studied via simulation. The tested model via data showed good fit and performed differently depending on the levels of the interaction of the strata variable Z*. An evidence that the baseline hazard functions and regression coefficients are not the same from stratum to stratum provides a gain in information as against the usage of Cox model. Simulation result showed that the present method produced better estimates in terms of bias, lower standard errors, and or mean square errors.

Keywords: stratified Cox, semiparametric model, infant mortality, multilevel factors, cofounding variables

Procedia PDF Downloads 553
27265 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams

Authors: Fares Jnaid, Riyad Aboutaha

Abstract:

In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.

Keywords: FEA, ANSYS, unbond, strain

Procedia PDF Downloads 250
27264 Behavior of Cold Formed Steel in Trusses

Authors: Reinhard Hermawan Lasut, Henki Wibowo Ashadi

Abstract:

The use of materials in Indonesia's construction sector requires engineers and practitioners to develop efficient construction technology, one of the materials used in cold-formed steel. Generally, the use of cold-formed steel is used in the construction of roof trusses found in houses or factories. The failure of the roof truss structure causes errors in the calculation analysis in the form of cross-sectional dimensions or frame configuration. The roof truss structure, vertical distance effect to the span length at the edge of the frame carries the compressive load. If the span is too long, local buckling will occur which causes problems in the frame strength. The model analysis uses various shapes of roof trusses, span lengths and angles with analysis of the structural stiffness matrix method. Model trusses with one-fifth shortened span and one-sixth shortened span also The trusses model is reviewed with increasing angles. It can be concluded that the trusses model by shortening the span in the compression area can reduce deflection and the model by increasing the angle does not get good results because the higher the roof, the heavier the load carried by the roof so that the force is not channeled properly. The shape of the truss must be calculated correctly so the truss is able to withstand the working load so that there is no structural failure.

Keywords: cold-formed, trusses, deflection, stiffness matrix method

Procedia PDF Downloads 161
27263 Lightweight Synergy IoT Framework for Smart Home Healthcare for the Elderly

Authors: Huawei Ma, Wencai Du, Shengbin Liang

Abstract:

Smart Home Healthcare technologies for the elderly represent a transformative paradigm that leverages emerging technologies to provide the elderly’ health indicators and daily life monitoring, emergency calls, environmental monitoring, behavior perception, and other services to ensure the health and safety of the elderly who are aging in their own home. However, the excessive complexity in the main adopted framework has affected the acceptance and adoption of the elderly. Therefore, this paper proposes a lightweight synergy architecture of IoT data and service for elderly home smart health environment. It includes the modeling of IoT applications and their workflows, data interoperability, interaction, and storage paradigms to meet the growing needs of older people so that they can lead an active, fulfilling, and quality life.

Keywords: smart home healthcare, IoT, independent living, lightweight framework

Procedia PDF Downloads 46
27262 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus

Authors: Ehsan Mehryaar, Reza Bushehri

Abstract:

One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.

Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response

Procedia PDF Downloads 196
27261 Modeling and Behavior of Structural Walls

Authors: Salima Djehaichia, Rachid Lassoued

Abstract:

Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.

Keywords: modeling, old building, pushover analysis, structural walls

Procedia PDF Downloads 238