Search results for: drone audio signal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2123

Search results for: drone audio signal

1283 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 347
1282 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 99
1281 The Reflection Framework to Enhance the User Experience for Cultural Heritage Spaces’ Websites in Post-Pandemic Times

Authors: Duyen Lam, Thuong Hoang, Atul Sajjanhar, Feifei Chen

Abstract:

With the emerging interactive technology applications helping users connect progressively with cultural artefacts in new approaches, the cultural heritage sector gains significantly. The interactive apps’ issues can be tested via several techniques, including usability surveys and usability evaluations. The severe usability problems for museums’ interactive technologies commonly involve interactions, control, and navigation processes. This study confirms the low quality of being immersive for audio guides in navigating the exhibition and involving experience in the virtual environment, which are the most vital features of new interactive technologies such as AR and VR. In addition, our usability surveys and heuristic evaluations disclosed many usability issues of these interactive technologies relating to interaction functions. Additionally, we use the Wayback Machine to examine what interactive apps/technologies were deployed on these websites during the physical visits limited due to the COVID-19 pandemic lockdown. Based on those inputs, we propose the reflection framework to enhance the UX in the cultural heritage domain with detailed guidelines.

Keywords: framework, user experience, cultural heritage, interactive technology, museum, COVID-19 pandemic, usability survey, heuristic evaluation, guidelines

Procedia PDF Downloads 68
1280 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A

Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim

Abstract:

Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.

Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor

Procedia PDF Downloads 188
1279 Design and Creation of a BCI Videogame for Training and Measure of Sustained Attention in Children with ADHD

Authors: John E. Muñoz, Jose F. Lopez, David S. Lopez

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a disorder that affects 1 out of 5 Colombian children, converting into a real public health problem in the country. Conventional treatments such as medication and neuropsychological therapy have been proved to be insufficient in order to decrease high incidence levels of ADHD in the principal Colombian cities. This work demonstrates a design and development of a videogame that uses a brain computer interface not only to serve as an input device but also as a tool to monitor neurophysiologic signal. The video game named “The Harvest Challenge” puts a cultural scene of a Colombian coffee grower in its context, where a player can use his/her avatar in three mini games created in order to reinforce four fundamental aspects: i) waiting ability, ii) planning ability, iii) ability to follow instructions and iv) ability to achieve objectives. The details of this collaborative designing process of the multimedia tool according to the exact clinic necessities and the description of interaction proposals are presented through the mental stages of attention and relaxation. The final videogame is presented as a tool for sustained attention training in children with ADHD using as an action mechanism the neuromodulation of Beta and Theta waves through an electrode located in the central part of the front lobe of the brain. The processing of an electroencephalographic signal is produced automatically inside the videogame allowing to generate a report of the theta/beta ratio evolution - a biological marker, which has been demonstrated to be a sufficient measure to discriminate of children with deficit and without.

Keywords: BCI, neuromodulation, ADHD, videogame, neurofeedback, theta/beta ratio

Procedia PDF Downloads 371
1278 AI and the Future of Misinformation: Opportunities and Challenges

Authors: Noor Azwa Azreen Binti Abd. Aziz, Muhamad Zaim Bin Mohd Rozi

Abstract:

Moving towards the 4th Industrial Revolution, artificial intelligence (AI) is now more popular than ever. This subject is gaining significance every day and is continually expanding, often merging with other fields. Instead of merely being passive observers, there are benefits to understanding modern technology by delving into its inner workings. However, in a world teeming with digital information, the impact of AI on the spread of disinformation has garnered significant attention. The dissemination of inaccurate or misleading information is referred to as misinformation, posing a serious threat to democratic society, public debate, and individual decision-making. This article delves deep into the connection between AI and the dissemination of false information, exploring its potential, risks, and ethical issues as AI technology advances. The rise of AI has ushered in a new era in the dissemination of misinformation as AI-driven technologies are increasingly responsible for curating, recommending, and amplifying information on online platforms. While AI holds the potential to enhance the detection and mitigation of misinformation through natural language processing and machine learning, it also raises concerns about the amplification and propagation of false information. AI-powered deepfake technology, for instance, can generate hyper-realistic videos and audio recordings, making it increasingly challenging to discern fact from fiction.

Keywords: artificial intelligence, digital information, disinformation, ethical issues, misinformation

Procedia PDF Downloads 91
1277 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
1276 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 291
1275 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 170
1274 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
1273 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 76
1272 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein

Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner

Abstract:

C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.

Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.

Procedia PDF Downloads 70
1271 RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired

Authors: Jayron Sanchez, Analyn Yumang, Felicito Caluyo

Abstract:

The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules.

Keywords: A* algorithm, RFID technology, ultrasonic sensor, ZigBee module

Procedia PDF Downloads 409
1270 Acute Bronchiolitis: Impact of an Educational Video on Mothers’ Knowledge, Attitudes, and Practices

Authors: Atitallah Sofien, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Bouyahia Olfa, Boukthir Samir

Abstract:

Introduction: Acute bronchiolitis (AB) is a real public health problem on a global and national scale. Its treatment is most often outpatient. The use of audio-visual supports, such as educational videos, is an innovation in therapeutic education in outpatient treatment. The aim of our study was to evaluate the impact of an educational video on the knowledge, attitudes, and practices of mothers of infants with AB. Methodology: This was a descriptive, analytical, and cross-sectional study with prospective data collection, including mothers of infants with AB. We assessed mothers' knowledge, attitudes, and practices regarding AB, and we created an educational video. We used a questionnaire written in Tunisian Arabic concerning sociodemographic data, mothers' knowledge and attitudes regarding AB, and their opinions on the video, as well as an observation grid to evaluate their practices on the nasopharyngeal unblocking technique. We compared the different parameters before and after watching the video. Results: We noted a statistically significant improvement in mothers' knowledge scores on AB (7.46 in the pre-test versus 14.08 in the post-test; p≤0.05), practices (12.42 in the pre-test versus 18 in the post-test; p≤0.05) and attitudes (5.86 in pre-test versus 9.02 in post-test; p≤0.05). Conclusion: The use of an educational video has a positive impact on the knowledge, practices, and attitudes of mothers towards AB.

Keywords: acute bronchiolitis, therapeutic education, mothers, educational video

Procedia PDF Downloads 68
1269 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124
1268 Intervention of Self-Limiting L1 Inner Speech during L2 Presentations: A Study of Bangla-English Bilinguals

Authors: Abdul Wahid

Abstract:

Inner speech, also known as verbal thinking, self-talk or private speech, is characterized by the subjective language experience in the absence of overt or audible speech. It is a psychological form of verbal activity which is being rehearsed without the articulation of any sound wave. In Psychology, self-limiting speech means the type of speech which contains information that inhibits the development of the self. People, in most cases, experience inner speech in their first language. It is very frequent in Bangladesh where the Bangla (L1) speaking students lose track of speech during their presentations in English (L2). This paper investigates into the long pauses (more than 0.4 seconds long) in English (L2) presentations by Bangla speaking students (18-21 year old) and finds the intervention of Bangla (L1) inner speech as one of its causes. The overt speeches of the presenters are placed on Audacity Audio Editing software where the length of pauses are measured in milliseconds. Varieties of inner speech questionnaire (VISQ) have been conducted randomly amongst the participants out of whom 20 were selected who have similar phenomenology of inner speech. They have been interviewed to describe the type and content of the voices that went on in their head during the long pauses. The qualitative interview data are then codified and converted into quantitative data. It was observed that in more than 80% cases students experience self-limiting inner speech/self-talk during their unwanted pauses in L2 presentations.

Keywords: Bangla-English Bilinguals, inner speech, L1 intervention in bilingualism, motor schema, pauses, phonological loop, phonological store, working memory

Procedia PDF Downloads 152
1267 Wearable Interface for Telepresence in Robotics

Authors: Uriel Martinez-Hernandez, Luke W. Boorman, Hamideh Kerdegari, Tony J. Prescott

Abstract:

In this paper, we present architecture for the study of telepresence, immersion and human-robot interaction. The architecture is built around a wearable interface, developed here, that provides the human with visual, audio and tactile feedback from a remote location. We have chosen to interface the system with the iCub humanoid robot, as it mimics many human sensory modalities, such as vision, with gaze control and tactile feedback. This allows for a straightforward integration of multiple sensory modalities, but also offers a more complete immersion experience for the human. These systems are integrated, controlled and synchronised by an architecture developed for telepresence and human-robot interaction. Our wearable interface allows human participants to observe and explore a remote location, while also being able to communicate verbally with humans located in the remote environment. Our approach has been tested from local, domestic and business venues, using wired, wireless and Internet based connections. This has involved the implementation of data compression to maintain data quality to improve the immersion experience. Initial testing has shown the wearable interface to be robust. The system will endow humans with the ability to explore and interact with other humans at remote locations using multiple sensing modalities.

Keywords: telepresence, telerobotics, human-robot interaction, virtual reality

Procedia PDF Downloads 290
1266 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 402
1265 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 134
1264 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy

Authors: J. Alvarez, J. Pimienta, R. Sarmiento

Abstract:

Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.

Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure

Procedia PDF Downloads 227
1263 Control and Automation of Sensors in Metering System of Fluid

Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah

Abstract:

This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: communication, metering, computer, sensor

Procedia PDF Downloads 555
1262 Target-Triggered DNA Motors and their Applications to Biosensing

Authors: Hongquan Zhang

Abstract:

Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.

Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification

Procedia PDF Downloads 84
1261 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
1260 British Aristocratic Irony on Screen: Subtitling Shifts in Downton Abbey

Authors: Nahed Almutairi

Abstract:

The subtitling process for period dramas implies a set of linguistic challenges. Audio-visual (AV) texts in this genre weave a rich tapestry of verbal irony blended with humor. The famous TV series Downtown Abbey contains such irony as one of the British aristocracy's linguistic markers. This study aims to examine subtitling strategies utilized in rendering such verbal irony. To counteract the negative postulated by Berman with the positive shifts, a qualitative analysis is conducted to examine the impact of the presence and absence of negative deforming tendencies in the Arabic subtitles of the first season of the British drama. This research is significant because it contributes to the discipline of translation studies, specifically the realm of AV translation. It seeks to provide a set of guidelines for optimal subtitling strategies that maintain the stylistic peculiarities of a social class that don’t exist in the target culture while also considering the practical aspects of translating subtitles. The findings indicate that negative shifts in the use of ironic expressions distort not only the stylistic elements of British aristocracy's utterances but also result in a loss of the intended meaning. This implies that what Berman’s model identifies as negative is also perceived as negative linguistic shifts in the Arabic subtitles of the British aristocracy’s verbal irony.

Keywords: Downton Abbey, deforming tendencies, berman, subtitling shifts, verbal irony

Procedia PDF Downloads 82
1259 X-Ray Detector Technology Optimization In CT Imaging

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 271
1258 Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein

Authors: Sofia G. Meirinho, Luis G. Dias, António M. Peres, Lígia R. Rodrigues

Abstract:

The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring.

Keywords: osteopontin, aptamer, aptasensor, screen-printed electrode, cyclic voltammetry

Procedia PDF Downloads 431
1257 Brain Stem Posterior Reversible Encephalopathy Syndrome in Nephrotic Syndrome

Authors: S. H. Jang

Abstract:

Posterior reversible encephalopathy syndrome (PRES) is characterized by acute neurologic symptoms (visual loss, headache, altered mentality and seizures) and by typical imaging findings (bilateral subcortical and cortical edema with predominatly posterior distribution). Nephrotic syndrome is a syndrome comprising signs of proteinuria, hypoalbuminemia, and edema. It is well known that hypertension predispose patient with nephrotic syndrome to PRES. A 45-year old male was referred for suddenly developed vertigo, disequilibrium. He had previous history of nephrotic syndrome. His medical history included diabetes controlled with medication. He was hospitalized because of generalized edema a few days ago. His vital signs were stable. On neurologic examination, his mental state was alert. Horizontal nystagmus to right side on return to primary position was observed. He showed good grade motor weakness and ataxia in right upper and lower limbs without other sensory abnormality. Brain MRI showed increased signal intensity in FLAIR image, decreased signal intensity in T1 image and focal enhanced lesion in T1 contrast image at whole midbrain, pons and cerebellar peduncle symmetrically, which was compatible with vasogenic edema. Laboratory findings showed severe proteinuria and hypoalbuminemia. He was given intravenous dexamethasone and diuretics to reduce vasogenic edema and raise the intra-vascular osmotic pressure. Nystagmus, motor weakness and limb ataxia improved gradually over 2 weeks; He recovered without any neurologic symptom and sign. Follow-up MRI showed decreased vasogenic edema fairly. We report a case of brain stem PRES in normotensive, nephrotic syndrome patient.

Keywords: posterior reversible encephalopathy syndrome, MRI, nephrotic syndrome, vasogenic brain edema

Procedia PDF Downloads 276
1256 Signal Processing of the Blood Pressure and Characterization

Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig

Abstract:

In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.

Keywords: blood pressure, SBP, DBP, detection algorithm

Procedia PDF Downloads 439
1255 University Coordinating Council Office: Perceived and Expected Roles and Performances

Authors: Pitsanu Poonpetpun

Abstract:

This research paper consisted of three objectives: 1) to investigate actual perception of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council; 2) to investigate expectation of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council; and 3) to compare actual perception and expectation of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council. A total of 316 samples from the population of the members of Suan Sunandha Rajabhat University were selected by use of the simple random sampling technique. Descriptive statistics and Dependent T- Test for paired samples were used, where the Dependent T- Test was for an analysis of a comparison of actual perception and expectation of Suan Sunandha Rajabhat University’s members towards roles and performances of the Coordinating Council Office under the University Council. The findings unveiled significantly high levels for the following roles: [i] appropriately circulating agendas and meeting files before time; [ii] preparing appropriate amount and quality of audio- visual equipment for meetings; [iii] compiling and keeping up-to-date documents; [iv] coordinating and working on linking all useful information to serve for the university uses for strategic policing; and [v] preparing appropriate meeting venues.

Keywords: coordinating council office of the university council, expected role, perceived role, performances of duties

Procedia PDF Downloads 298
1254 Performance Evaluation of a Very High-Resolution Satellite Telescope

Authors: Walid A. Attia, Taher M. Bazan, Fawzy Eltohamy, Mahmoud Fathy

Abstract:

System performance evaluation is an essential stage in the design of high-resolution satellite telescopes prior to the development process. In this paper, a system performance evaluation of a very high-resolution satellite telescope is investigated. The evaluated system has a Korsch optical scheme design. This design has been discussed in another paper with respect to three-mirror anastigmat (TMA) scheme design and the former configuration showed better results. The investigated system is based on the Korsch optical design integrated with a time-delay and integration charge coupled device (TDI-CCD) sensor to achieve a ground sampling distance (GSD) of 25 cm. The key performance metrics considered are the spatial resolution, the signal to noise ratio (SNR) and the total modulation transfer function (MTF) of the system. In addition, the national image interpretability rating scale (NIIRS) metric is assessed to predict the image quality according to the modified general image quality equation (GIQE). Based on the orbital, optical and detector parameters, the estimated GSD is found to be 25 cm. The SNR has been analyzed at different illumination conditions of target albedos, sun and sensor angles. The system MTF has been computed including diffraction, aberration, optical manufacturing, smear and detector sampling as the main contributors for evaluation the MTF. Finally, the system performance evaluation results show that the computed MTF value is found to be around 0.08 at the Nyquist frequency, the SNR value was found to be 130 at albedo 0.2 with a nadir viewing angles and the predicted NIIRS is in the order of 6.5 which implies a very good system image quality.

Keywords: modulation transfer function, national image interpretability rating scale, signal to noise ratio, satellite telescope performance evaluation

Procedia PDF Downloads 384