Search results for: data transfer
26398 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology
Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen
Abstract:
Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient
Procedia PDF Downloads 20526397 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System
Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine
Abstract:
The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms
Procedia PDF Downloads 52726396 A Luminescence Study of Bi³⁺ Codoping on Eu³⁺ Doped YPO₄
Authors: N. Yaiphaba, Elizabeth C. H.
Abstract:
YPO₄ nanoparticles codoped with Eu³⁺(5 at.%) and Bi³⁺(0, 1, 3, 5, 7, 10, 12, 15, 20 at.%) have been prepared in poly acrylic acid (PAA)-H₂O medium by hydrothermal synthesis by maintaining a temperature of 180oC. The crystalline structure of as-prepared and 500oC annealed samples transforms from tetragonal (JCPDS-11-0254) to hexagonal phase (JCPDS-42-0082) with increasing concentration of Bi³⁺ ions. However, 900oC annealed samples exhibit tetragonal structure. The crystallite size of the particles varies from 19-50 nm. The luminescence intensity increases at lower concentration of Bi³⁺ ions and then decreases with increasing Bi3+ ion concentrations. The luminescence intensity further increases on annealing at 500oC and 900oC. Further, 900oC annealed samples show sharp increase in luminescence intensity. Moreover, the samples follow bi-exponential decay indicating energy transfer from donor to the activator or non-uniform distribution of ions in the samples. The samples on excitation at 318 nm exhibit near white emission while at 394 nm excitation show emission in the red region. The as-prepared samples are redispersible and have potential applications in display devices, metal ion sensing, biological labelling, etc.Keywords: charge transfer, sensitizer, activator, annealing
Procedia PDF Downloads 6526395 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring
Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis
Abstract:
Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.Keywords: earth observation, monitoring, natural hazards, remote sensing
Procedia PDF Downloads 3726394 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM
Procedia PDF Downloads 31226393 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 7326392 The Evolution of the Simulated and Observed Star Formation Rates of Galaxies for the Past 13 Billion Years
Authors: Antonios Katsianis
Abstract:
I present the evolution of the galaxy Star Formation Rate Function (SFRF), star formation rate-stellar mass relation (SFR-M*) and Cosmic Star Formation Rate Density (CSFRD) of z = 0-8 galaxies employing both the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations and a compilation of UV, Ha, radio and IR data. While I present comparisons between the above, I evaluate the effect and importance of supernovae/active galactic nuclei feedback. The relation between the star formation rate and stellar mass of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, a tension between the above is reported in the literature. I present the evolution of the SFR-M* relation and demonstrate the inconsistencies between observations that are retrieved using different methods. I employ cosmological hydrodynamic simulations combined with radiative transfer methods and compare these with a range of observed data in order to investigate further the root of this tension. Last, I present insights about the scatter of the SFR-M* relation and investigate which mechanisms (e.g. feedback) drive its shape and evolution.Keywords: cosmological simulations, galaxy formation and evolution, star formation rate, stellar masses
Procedia PDF Downloads 14626391 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip
Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi
Abstract:
This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.Keywords: MHD nanofluid, porous medium, rotating disk, slip effect
Procedia PDF Downloads 25626390 Transfer of Information Heritage between Algerian Veterinarians and Breeders: Assessment of Information and Communication Technology Using Mobile Phone
Authors: R. Bernaoui, P. Ohly
Abstract:
Our research shows the use of the mobile phone that consolidates the relationship between veterinarians, and that between breeders and veterinarians. On the other hand it asserts that the tool in question is a means of economic development. The results of our survey reveal a positive return to the veterinary community, which shows that the mobile phone has become an effective means of sustainable development through the transfer of a rapid and punctual information inheritance via social networks; including many Internet applications. Our results show that almost all veterinarians use the mobile phone for interprofessional communication. We therefore believe that the use of the mobile phone by livestock operators has greatly improved the working conditions, just as the use of this tool contributes to a better management of the exploitation as long as it allows limit travel but also save time. These results show that we are witnessing a growth in the use of mobile telephony technologies that impact is as much in terms of sustainable development. Allowing access to information, especially technical information, the mobile phone, and Information and Communication of Technology (ICT) in general, give livestock sector players not only security, by limiting losses, but also an efficiency that allows them a better production and productivity.Keywords: algeria, breeder-veterinarian, digital heritage, networking
Procedia PDF Downloads 12026389 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process
Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius
Abstract:
The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses
Procedia PDF Downloads 25526388 A Service-Learning Experience in the Subject of Adult Nursing
Authors: Eva de Mingo-Fernández, Lourdes Rubio Rico, Carmen Ortega-Segura, Montserrat Querol-García, Raúl González-Jauregui
Abstract:
Today, one of the great challenges that the university faces is to get closer to society and transfer knowledge. The competency-based training approach favours a continuous interaction between practice and theory, which is why it is essential to establish real experiences with reflection and debate and to contrast them with personal and professional knowledge. Service-learning (SL) consists of an integration of academic learning with service in the community, which enables teachers to transfer knowledge with social value and students to be trained on the basis of experience of real needs and problems with the aim of solving them. SLE combines research, teaching, and social value knowledge transfer with the real social needs and problems of a community. Goal: The objective of this study was to design, implement, and evaluate a service-learning program in the subject of adult nursing for second-year nursing students. Methodology: After establishing collaboration with eight associations of people with different pathologies, the students were divided into eight groups, and each group was assigned an association. The groups were made up of 10-12 students. The associations willing to participate were for the following conditions: diabetes, multiple sclerosis, cancer, inflammatory bowel disease, fibromyalgia, heart, lung, and kidney diseases. The methodological design consisting of 5 activities was then applied. Three activities address personal and individual reflections, where the student initially describes what they think it is like to live with a certain disease. They then express their reflections resulting from an interview conducted by peers, in person or online, with a person living with this particular condition, and after sharing the results of their reflections with the rest of the group, they make an oral presentation in which they present their findings to the other students. This is followed by a service task in which the students collaborate in different activities of the association, and finally, a third individual reflection is carried out in which the students express their experience of collaboration. The evaluation of this activity is carried out by means of a rubric for both the reflections and the presentation. It should be noted that the oral presentation is evaluated both by the rest of the classmates and by the teachers. Results: The evaluation of the activity, given by the students, is 7.80/10, commenting that the experience is positive and brings them closer to the reality of the people and the area.Keywords: academic learning integration, knowledge transfer, service-learning, teaching methodology
Procedia PDF Downloads 6726387 Constructal Enhancement of Fins Design Integrated to Phase Change Materials
Authors: Varun Joshi, Manish K. Rathod
Abstract:
The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.Keywords: constructal theory, enthalpy porosity approach, phase change materials, fins
Procedia PDF Downloads 17926386 Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application
Authors: M. Kaouane, A. Boukhelifa, A. Cheriti
Abstract:
In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer.Keywords: Buck-Boost converter, switch, photovoltaic, PWM, power, energy transfer
Procedia PDF Downloads 90226385 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k- models such as standard, RNG and Realizable k- model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown a good ability of this method in predicting more detailed flow structures in the cavity.Keywords: mixed convection, lid-driven cavity, turbulent flow, RANS model, large Eddy simulation
Procedia PDF Downloads 20826384 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology
Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa
Abstract:
Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.Keywords: network, mixing, hydrates, continuous process, carbon dioxide
Procedia PDF Downloads 5026383 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application
Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham
Abstract:
E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management
Procedia PDF Downloads 10026382 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution
Authors: Peter G. Hollis, Kim G. Clarke
Abstract:
Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag
Procedia PDF Downloads 26526381 Design and Implementation of a Hardened Cryptographic Coprocessor with 128-bit RISC-V Core
Authors: Yashas Bedre Raghavendra, Pim Vullers
Abstract:
This study presents the design and implementation of an abstract cryptographic coprocessor, leveraging AMBA(Advanced Microcontroller Bus Architecture) protocols - APB (Advanced Peripheral Bus) and AHB (Advanced High-performance Bus), to enable seamless integration with the main CPU(Central processing unit) and enhance the coprocessor’s algorithm flexibility. The primary objective is to create a versatile coprocessor that can execute various cryptographic algorithms, including ECC(Elliptic-curve cryptography), RSA(Rivest–Shamir–Adleman), and AES (Advanced Encryption Standard) while providing a robust and secure solution for modern secure embedded systems. To achieve this goal, the coprocessor is equipped with a tightly coupled memory (TCM) for rapid data access during cryptographic operations. The TCM is placed within the coprocessor, ensuring quick retrieval of critical data and optimizing overall performance. Additionally, the program memory is positioned outside the coprocessor, allowing for easy updates and reconfiguration, which enhances adaptability to future algorithm implementations. Direct links are employed instead of DMA(Direct memory access) for data transfer, ensuring faster communication and reducing complexity. The AMBA-based communication architecture facilitates seamless interaction between the coprocessor and the main CPU, streamlining data flow and ensuring efficient utilization of system resources. The abstract nature of the coprocessor allows for easy integration of new cryptographic algorithms in the future. As the security landscape continues to evolve, the coprocessor can adapt and incorporate emerging algorithms, making it a future-proof solution for cryptographic processing. Furthermore, this study explores the addition of custom instructions into RISC-V ISE (Instruction Set Extension) to enhance cryptographic operations. By incorporating custom instructions specifically tailored for cryptographic algorithms, the coprocessor achieves higher efficiency and reduced cycles per instruction (CPI) compared to traditional instruction sets. The adoption of RISC-V 128-bit architecture significantly reduces the total number of instructions required for complex cryptographic tasks, leading to faster execution times and improved overall performance. Comparisons are made with 32-bit and 64-bit architectures, highlighting the advantages of the 128-bit architecture in terms of reduced instruction count and CPI. In conclusion, the abstract cryptographic coprocessor presented in this study offers significant advantages in terms of algorithm flexibility, security, and integration with the main CPU. By leveraging AMBA protocols and employing direct links for data transfer, the coprocessor achieves high-performance cryptographic operations without compromising system efficiency. With its TCM and external program memory, the coprocessor is capable of securely executing a wide range of cryptographic algorithms. This versatility and adaptability, coupled with the benefits of custom instructions and the 128-bit architecture, make it an invaluable asset for secure embedded systems, meeting the demands of modern cryptographic applications.Keywords: abstract cryptographic coprocessor, AMBA protocols, ECC, RSA, AES, tightly coupled memory, secure embedded systems, RISC-V ISE, custom instructions, instruction count, cycles per instruction
Procedia PDF Downloads 6726380 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid
Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri
Abstract:
In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.Keywords: platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion
Procedia PDF Downloads 18526379 Reliability Verification of the Performance Evaluation of Multiphase Pump
Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi
Abstract:
The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification
Procedia PDF Downloads 43426378 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 19226377 Freshwater Fish Diversity and IUCN Status of Glacial-fed (Bheri) and Spring-fed (Babai) Rivers in the Wake of Inter-basin Water Transfer
Authors: Kumar Khatri, Bibhuti Ranjan Jha, Smriti Gurung, Udhab Raj Khadka
Abstract:
Freshwater fishes are crucial components of aquatic ecosystems but are being affected by a range of anthropogenic activities. A large number of freshwater bodies in Nepal are under different anthropogenic threats, thereby affecting freshwater biodiversity, including fish fauna. Inter-basin water transfer (IBWT) involving damming and diversion has been considered as one of the major threats to the rivers, yet many such projects are in the pipeline. Impact assessment of such projects include generation of baseline information on different biotic and abiotic variables. The aim of this study was to generate baseline information on fish diversity from the glacial-fed Bheri and the spring-fed Babai rivers and their selected tributaries from Western Nepal in the wake of the first inter-basin water transfer from the former to the latter. A total of 10 sites, 5 each from Bheri and Babai systems, were chosen strategically. Seasonal electrofishing was conducted in 2018 following the standard method. A total of 32 species with Catch per Unite Effort (CPUE) of 46.94±24.06 from Bheri and 42 species with CPUE of 63.02±51.80 from Babai were recorded. Cyprinidae, followed by Nemacheilidae, were the most dominant fish Family in both river systems. Barilius vagra and Schistura beavani were the most dominant species in the Bheri and the Babai systems, respectively. Species richness and abundance showed a significant difference between the rivers. The difference in fish assemblages reflects differences in the ecological regimes of these rivers. Of the total species, at least 8 are in the threatened categories of the IUCN Red List, which need active conservation measures. The findings provide a reference to assess the impacts of water transfers on fish in these river systems and could be helpful to other similar river systems in the future.Keywords: babai river, bheri river, fish diversity, damming
Procedia PDF Downloads 8626376 Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet
Authors: So-Ra Jeon, Chan Byon
Abstract:
This study investigates the heat transfer characteristics of aluminum foam heat sink and pin fin heat sink subjected to an impinging air jet under a fixed pumping power condition as well as fixed flow rate condition. The effects of dimensionless pumping power or the Reynolds number and the impinging distance ratio on the Nusselt number are considered. The result shows that the effect of the impinging distance on the Nusselt number is negligible under a fixed pumping power condition, while the Nusselt number increases with decreasing the impinging distance under a fixed pumping power condition. A correlation for the pressure drop is obtained as a function of the flow rate and the impinging distance ratio. And correlations for the stagnation Nusselt number of the impinging jet are developed as a function of the pumping power. The aluminum foam heat sinks did not show higher thermal performance compared to a conventional pin fin heat sink under a fixed pumping power condition.Keywords: aluminum foam, heat sinks, impinging jet, pumping power
Procedia PDF Downloads 30326375 A Semi-Automatic Mechanism Used in the Peritoneal Dialysis Connection
Authors: I-En Lin, Feng-Jung Yang
Abstract:
In addition to kidney transplant, renal replacement therapy involves hemodialysis and peritoneal dialysis (PD). PD possesses advantages such as maintaining stable physiological blood status and blood pressure, alleviating anemia, and improving mobility, which make it an ideal method for at-home dialysis treatment. However, potential danger still exists despite the numerous advantages of PD, particularly when patients require dialysis exchange four to five times a day, during which improper operation can easily lead to peritonitis. The process of draining and filling is called an exchange and takes about 30 to 40 minutes. Connecting the transfer set requires sterile technique. Transfer set may require a new cap each time that it disconnects from the bag after an exchange. There are many chances to get infection due to unsafe behavior (ex: hand tremor, poor eyesight and weakness, cap fall-down). The proposed semi-automatic connection mechanism used in the PD can greatly reduce infection chances. This light-weight connection device is portable. The device also does not require using throughout the entire process. It is capable of significantly improving quality of life. Therefore, it is very promising to adopt in home care application.Keywords: automatic connection, catheter, glomerulonephritis, peritoneal dialysis
Procedia PDF Downloads 23526374 Thermal Analysis for Darcy Forchheimer Effect with Hybrid Ferro Fluid Flow
Authors: Behzad Ali Khan, M. Zubair Akbar Qureshi
Abstract:
The article analyzes the Darcy Forchheimer 2D Hybrid ferrofluid. The flow of a Hybrid ferrofluid is made due to an unsteady porous channel. The classical liquid water is treated as a based liquid. The flow in the permeable region is characterized by the Darcy-Forchheimer relation. Heat transfer phenomena are studied during the flow. The transformation of a partial differential set of equations into a strong ordinary differential frame is formed through appropriate variables. The numerical Shooting Method is executed for solving the simplified set of equations. In addition, a numerical analysis (ND-Solve) is utilized for the convergence of the applied technique. The influence of some flow model quantities like Pr (Prandtle number), r (porous medium parameter), F (Darcy-porous medium parameter), Re (Reynolds number), Pe (Peclet number) on velocity and temperature field are scrutinized and studied through sketches. Certain physical factors like f ''(η) (skin friction coefficient) and θ^'(η) (rate of heat transfer) are first derived and then presented through tables.Keywords: darcy forcheimer, hybrid ferro fluid, porous medium, porous channel
Procedia PDF Downloads 17326373 Knowledge Management (KM) Practices: A Study of KM Adoption among Doctors in Kuwait
Authors: B. Alajmi, L. Marouf, A. S. Chaudhry
Abstract:
In recent years, increasing emphasis has been placed upon issues concerning the evaluation of health care. In this regard, knowledge management has also been considered an important component of the evaluation process. KM facilitates the transfer of existing knowledge or the development of new knowledge among healthcare staff and patients. This research aimed to examine how hospitals in Kuwait employ knowledge management practices, including capturing, sharing, and generating, and the perceived impact of KM practices on performance of hospitals in Kuwait. Through adopting a quantitative survey method with 277 sample of doctors, the study found that in terms of the three major knowledge management practices – knowledge capturing, sharing, and generating – the adoption of KM practices were rated very low in the sampled hospitals in Kuwait. Hospitals paid little attention to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, knowledge management practices were perceived to have an impact on hospitals’ performance. Through knowledge capturing, sharing, and generating, hospitals could improve the services they provide through documenting best practices, transforming their hospitals into learning organizations in which lessons learned are captured, stored, and made available for others to learn from.Keywords: knowledge management, hospitals, knowledge management practices, knowledge management tools, performance
Procedia PDF Downloads 50226372 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine
Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.
Abstract:
The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust
Procedia PDF Downloads 35626371 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 6326370 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition
Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang
Abstract:
The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate
Procedia PDF Downloads 43526369 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 518