Search results for: DC electrical motor
2054 Assessment of Vehicular Emission and Its Impact on Urban Air Quality
Authors: Syed Imran Hussain Shah
Abstract:
Air pollution rapidly impacts the Earth's climate and environmental quality, causing public health nuisances and cardio-pulmonary illnesses. Air pollution is a global issue, and all population groups in all the regions in the developed and developing parts of the world were affected by it. The promise of a reduction in deaths and diseases as per SDG No. 3 is an international commitment towards sustainable development. In that context, assessing and evaluating the ambient air quality is paramount. This article estimates the air pollution released by the vehicles on roads of Lahore, a mega city having 13.98 million populations. A survey was conducted on different fuel stations to determine the estimated fuel pumped to different types of vehicles from different fuel stations. The number of fuel stations in Lahore is around 350. Another survey was also conducted to interview the drivers to know the per-litre fuel consumption of other vehicles. Therefore, a survey was conducted on 189 fuel stations and 400 drivers using a combination of random sampling and convenience sampling methods. The sampling was done in a manner to cover all areas of the city including central commercial hubs, modern housing societies, industrial zones, main highways, old traditional population centres, etc. Mathematical equations were also used to estimate the emissions from different modes of vehicles. Due to the increase in population, the number of vehicles is increasing, and consequently, traffic emissions were rising at a higher level. Motorcycles, auto rickshaws, motor cars, and vans were the main contributors to Carbon dioxide and vehicular emissions in the air. It has been observed that vehicles that use petrol fuel produce more Carbon dioxide emissions in the air. Buses and trucks were the main contributors to NOx in the air due to the use of diesel fuel. Whereas vans, buses, and trucks produce the maximum amount of SO2. PM10 and PM2.5 were mainly produced by motorcycles and motorcycle two-stroke rickshaws. Auto rickshaws and motor cars mainly produce benzene emissions. This study may act as a major tool for traffic and vehicle policy decisions to promote better fuel quality and more fuel-efficient vehicles to reduce emissions.Keywords: particulate matter, nitrogen dioxide, climate change, pollution control
Procedia PDF Downloads 132053 The Value of Dynamic Magnetic Resonance Defecography in Assessing the Severity of Defecation Disorders
Authors: Ge Sun, Monika Trzpis, Robbert J. de Haas, Paul M. A. Broens
Abstract:
Introduction: Dynamic magnetic resonance defecography is frequently used to assess defecation disorders. We aimed to investigate the usefulness of dynamic magnetic resonance defecography for assessing the severity of defecation disorder. Methods: We included patients retrospectively from our tertiary referral hospital who had undergone dynamic magnetic resonance defecography, anorectal manometry, and anal electrical sensitivity tests to assess defecation disorders between 2014 and 2020. The primary outcome was the association between the dynamic magnetic resonance defecography variables and the severity of defecation disorders. We assessed the severity of fecal incontinence and constipation with the Wexner incontinence and Agachan constipation scores. Results: Out of the 32 patients included, 24 completed the defecation questionnaire. During defecation, the M line length at magnetic resonance correlated with the Agachan score (r = 0.45, p = 0.03) and was associated with anal sphincter pressure (r=0.39, p=0.03) just before defecation. During rest and squeezing, the H line length at imaging correlated with the Wexner incontinence score (r=0.49, p=0.01 and r=0.69, p< 0.001, respectively). H line length also correlated positively with the anal electrical sensation threshold during squeezing (r=0.50, p=0.004) and during rest (r= 0.42, p=0.02). Conclusions: The M and H line lengths at dynamic magnetic resonance defecography can be used to assess the severity of constipation and fecal incontinence respectively and reflect anatomic changes of the pelvic floor. However, as these anatomic changes are generally late-stage and irreversible, anal manometry seems a better diagnostic approach to assess early and potentially reversible changes in patients with defecation disorders.Keywords: defecation disorders, dynamic magnetic resonance defecography, anorectal manometry, anal electrical sensitivity tests, H line, M line
Procedia PDF Downloads 1062052 Design and Implementation of Wireless Syncronized AI System for Security
Authors: Saradha Priya
Abstract:
Developing virtual human is very important to meet the challenges occurred in many applications where human find difficult or risky to perform the task. A robot is a machine that can perform a task automatically or with guidance. Robotics is generally a combination of artificial intelligence and physical machines (motors). Computational intelligence involves the programmed instructions. This project proposes a robotic vehicle that has a camera, PIR sensor and text command based movement. It is specially designed to perform surveillance and other few tasks in the most efficient way. Serial communication has been occurred between a remote Base Station, GUI Application, and PC.Keywords: Zigbee, camera, pirsensor, wireless transmission, DC motor
Procedia PDF Downloads 3492051 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 6052050 Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant
Authors: David Hasurungan
Abstract:
This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7.Keywords: reliability, obsolescence, retrofit, vacuum contactor
Procedia PDF Downloads 2912049 Methylphenidate and Placebo Effect on Brain Activity and Basketball Free Throw: A Randomized Controlled Trial
Authors: Mohammad Khazaei, Reza Rostami, Hasan Gharayagh Zandi, Rouhollah Basatnia, Mahbubeh Ghayour Najafabadi
Abstract:
Objective: Methylphenidate has been demonstrated to enhance attention and cognitive processes, and placebo treatments have also been found to improve attention and cognitive processes. Additionally, methylphenidate may have positive effects on motion perception and sports performance. Nevertheless, additional research is needed to fully comprehend the neural mechanisms underlying the effects of methylphenidate and placebo on cognitive and motor functions. Methods: In this randomized controlled trial, 18 young semi-professional basketball players aged 18-23 years were randomly and equally assigned to either a Ritalin or Placebo group. The participants performed 20 consecutive free throws; their scores were recorded on a 0-3 scale. The participants’ brain activity was recorded using electroencephalography (EEG) for 5 minutes seated with their eyes closed. The Ritalin group received a 10 mg dose of methylphenidate, while the Placebo group received a 10mg dose of placebo. The EEG was obtained 90 minutes after the drug was administere Results: There was no significant difference in the absolute power of brain waves between the pre-test and post-tests in the Placebo group. However, in the Ritalin group, a significant difference in the absolute power of brain waves was observed in the Theta band (5-6 Hz) and Beta band (21-30 Hz) between pre- and post-tests in Fp2, F8, and Fp1. In these areas, the absolute power of Beta waves was higher during the post-test than during the pre-test. The Placebo group showed a more significant difference in free throw scores than the Ritalin group. Conclusions: In conclusion, these results suggest that Ritalin effect on brain activity in areas associated with attention and cognitive processes, as well as improve basketball free throws. However, there was no significant placebo effect on brain activity performance, but it significantly affected the improvement of free throws. Further research is needed to fully understand the effects of methylphenidate and placebo on cognitive and motor functions.Keywords: methylphenidate, placebo effect, electroencephalography, basketball free throw
Procedia PDF Downloads 792048 Genotypic Variation in the Germination Performance and Seed Vigor of Safflower (Carthamus tinctorius L.)
Authors: Mehmet Demir Kaya, Engin Gökhan Kulan, Onur İleri, Süleyman Avcı
Abstract:
Due to variation in seed size, shape and oil content of safflower cultivars, germination and emergence performance have been severely influenced by seed characteristics. This study aimed to determine genotypic variation among safflower genotypes for one thousand seed weight, oil content, germination and seed vigor using electrical conductivity (EC) and cold test. In the study, safflower lines ES37-5, ES38-4, ES43-11, ES55-14 and ES58-11 which were developed by single seed selection method, and Dinçer and Remzibey-05 were used as standard varieties. The genotypes were grown under rainfed conditions in Eskişehir, Turkey with four replications. The seeds of each genotype were subjected to standard germination and emergence test at 25°C for 10 days with four replications and 50 seeds per replicate. Electrical conductivity test was performed at 25°C for 24 h to assess the seed vigor. Also, cold test were applied to each safflower genotype at 10°C for 4 days and 25°C for 6 days. Results showed that oil content of the safflower genotypes were different. The highest oil content was determined in ES43-11 with 36.6% while the lowest was 25.9% in ES38-4. Higher germination and emergence rate were obtained from ES55-14 with 96.5% and 73.0%, respectively. There was no significant difference among the safflower genotypes for EC values. Cold test showed that ES43-11 and ES55-14 gave the maximum germination percentages. It was concluded that genotypic factors except for soil and climatic conditions play an important role for determining seed vigor because safflower genotypes grown at the same condition produced various seed vigor values.Keywords: Carthamus tinctorius L., germination, emergence, cold test, electrical conductivity
Procedia PDF Downloads 3702047 Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study
Authors: Oya Umit Yemisci, Nur Saracgil Cosar, Tubanur Ozturk Sisman, Selin Ozen
Abstract:
Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT.Keywords: sympathetic skin response, simple reaction time, chronic autoimmune thyroiditis
Procedia PDF Downloads 1482046 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Iheanyi Umez-Eronini
Abstract:
Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation
Procedia PDF Downloads 822045 Effective Use of X-Box Kinect in Rehabilitation Centers of Riyadh
Authors: Reem Alshiha, Tanzila Saba
Abstract:
Physical rehabilitation is the process of helping people to recover and be able to go back to their former activities that have been delayed due to external factors such as car accidents, old age and victims of strokes (chronic diseases and accidents, and those related to sport activities).The cost of hiring a personal nurse or driving the patient to and from the hospital could be costly and time-consuming. Also, there are other factors to take into account such as forgetfulness, boredom and lack of motivation. In order to solve this dilemma, some experts came up with rehabilitation software to be used with Microsoft Kinect to help the patients and their families for in-home rehabilitation. In home rehabilitation software is becoming more and more popular, since it is more convenient for all parties affiliated with the patient. In contrast to the other costly market-based systems that have no portability, Microsoft’s Kinect is a portable motion sensor that reads body movements and interprets it. New software development has made rehabilitation games available to be used at home for the convenience of the patient. The game will benefit its users (rehabilitation patients) in saving time and money. There are many software's that are used with the Kinect for rehabilitation, but the software that is chosen in this research is Kinectotherapy. Kinectotherapy software is used for rehabilitation patients in Riyadh clinics to test its acceptance by patients and their physicians. In this study, we used Kinect because it was affordable, portable and easy to access in contrast to expensive market-based motion sensors. This paper explores the importance of in-home rehabilitation by using Kinect with Kinectotherapy software. The software targets both upper and lower limbs, but in this research, the main focus is on upper-limb functionality. However, the in-home rehabilitation is applicable to be used by all patients with motor disability, since the patient must have some self-reliance. The targeted subjects are patients with minor motor impairment that are somewhat independent in their mobility. The presented work is the first to consider the implementation of in-home rehabilitation with real-time feedback to the patient and physician. This research proposes the implementation of in-home rehabilitation in Riyadh, Saudi Arabia. The findings show that most of the patients are interested and motivated in using the in-home rehabilitation system in the future. The main value of the software application is due to these factors: improve patient engagement through stimulating rehabilitation, be a low cost rehabilitation tool and reduce the need for expensive one-to-one clinical contact. Rehabilitation is a crucial treatment that can improve the quality of life and confidence of the patient as well as their self-esteem.Keywords: x-box, rehabilitation, physical therapy, rehabilitation software, kinect
Procedia PDF Downloads 3422044 Long Wavelength GaInNAs Based Hot Electron Light Emission VCSOAs
Authors: Faten Adel Ismael Chaqmaqchee
Abstract:
Optical, electrical and optical-electrical characterisations of surface light emitting VCSOAs devices are reported. The hot electron light emitting and lasing in semiconductor hetero-structure vertical cavity semiconductor optical amplifier (HELLISH VCSOA) device is a surface emitter based on longitudinal injection of electron and hole pairs in their respective channels. Ga0.35In0.65N0.02As0.08/GaAs was used as an active material for operation in the 1.3 μm window of the optical communications. The device has undoped Distributed Bragg Reflectors (DBRs) and the current is injected longitudinally, directly into the active layers and does not involve DBRs. Therefore, problems associated with refractive index contrast and current injection through the DBR layers, which are common with the doped DBRs in conventional VCSOAs, are avoided. The highest gain of around 4 dB is obtained for the 1300 nm wavelength operation.Keywords: HELLISH, VCSOA, GaInNAs, luminescence, gain
Procedia PDF Downloads 3602043 Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift
Authors: Esubalew Yehualaw Melaku, Tigistu Haile Eritro
Abstract:
In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential
Procedia PDF Downloads 792042 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 902041 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 1422040 Arc Flash Analysis: Technique to Mitigate Fire Incidents in Substations
Authors: M. H. Saeed, M. Rasool, M. A. Jawed
Abstract:
Arc Flash Analysis has been a subject of great interest since the electrical fire incidents have been reduced to a great extent after the implementation of arc flash study at different sites. An Arc flash in substations is caused by short circuits over the air or other melted conductors and small shrapnel. Arc flash incidents result in the majority of deaths in substations worldwide. Engro Fertilizers Limited (EFERT) site having a mix of vintage non-internal arc rated and modern arc rated switchgears, carried out an arc flash study of the whole site in accordance with NFPA70E standard. The results not only included optimizing site protection coordination settings but also included marking of Shock and Arc flash protection boundaries in all switchgear rooms. Work permit procedures upgradation is also done in accordance with this study to ensure proper arc rated PPEs and arc flash boundaries protocols are fully observed and followed. With the new safety, protocols working on electrical equipment will be much safer than ever before.Keywords: Arc flash, non-internal arc rated, protection coordination, shock boundary
Procedia PDF Downloads 1782039 Optimization of Machining Parametric Study on Electrical Discharge Machining
Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel
Abstract:
Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.Keywords: MMR, TWR, OC, DOE, ANOVA, minitab
Procedia PDF Downloads 3262038 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy
Authors: Raed Kouta
Abstract:
A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.Keywords: fuel cell, mechanic, reliability, uncertainties
Procedia PDF Downloads 1882037 Monitoring Vaginal Electrical Resistance, Follicular Wave and Hormonal Profile during Estrus Cycle in Indigenous Sheep
Authors: T. A. Rosy, M. R. I. Talukdar, N. S. Juyena, F. Y. Bari, M. N. Islam
Abstract:
The ovarian follicular dynamics, vaginal electrical resistance (VER) and progesterone (P4) and estrogen (E2) profiles were investigated during estrus cycle in four indigenous ewes. Daily VER values were recorded with heat detector. The follicles were observed and measured by trans-rectal ultrasonography. Blood was collected daily for hormonal profiles. Results showed a significant variation in VER values (P<0.05) at estrus in regards to ewes and cycles. The day difference between two successive lower values in VER waves ranged from 13-17 days which might indicate the estrus cycle in indigenous ewes. Trans-rectal ultrasonography of ovaries revealed the presence of two to four waves of follicular growth during the study period. Results also showed that follicular diameter was negatively correlated with VER values. Study of hormonal profiles by ELISA revealed a positive correlation between E2 concentration and development of follicle and negative correlation between P4 concentration and development of follicle. The concentrations of estradiol increased at the time of estrus and then fall down in a basal level. Development of follicular size was accompanied by an increase in the concentration of serum estradiol. Inversely, when follicles heed to ovulation concentration of progesterone starts to fall down and after ovulation it turns its way to the zenith and remains at this state until next ovulatory follicle comes to its maximum diameter. This study could help scientists to set up a manipulative reproductive technique for improving genetic values of sheep in Bangladesh.Keywords: ovarian follicle, hormonal profile, sheep, ultrasonography, vaginal electrical resistance
Procedia PDF Downloads 2662036 The Impact of the Training Program Provided by the Saudi Archery Federation on the Electromyography of the Bow Arm Muscles
Authors: Hana Aljumayi, Mohammed Issa
Abstract:
The aim of this study was to investigate the effect of the training program for professional athletes at the Saudi Archery Federation on the electrical activity of the muscles involved in pulling the bowstring, maximum muscle strength (MVC) and to identify the relationship between the electrical activity of these muscles and accuracy in shooting among female archers. The researcher used a descriptive approach that was suitable for the nature of the study, and a sample of nine female archers was selected using purposive sampling. An EMG device was used to measure signal amplitude, signal frequency, spectral energy signal, and MVC. The results showed statistically significant differences in signal amplitude among muscles, with F(8,1)=5.91 and a significance level of 0.02. There were also statistically significant differences between muscles in terms of signal frequency, with F(8,1)=8.23 and a significance level of 0.02. Bonferroni test results indicated statistically significant differences between measurements at a significance level of 0.05, with anterior measurements showing an average difference of 16.4 compared to other measurements. Furthermore, there was a significant negative correlation between signal amplitude in the calf muscle and accuracy in shooting (r=-0.78) at a significance level of 0.02. There was also a significant positive correlation between signal frequency in the calf muscle and accuracy in shooting (r=0.72) at a significance level of 0.04. In conclusion, it appears that the training program for archery athletes focused more on skill development than physical aspects such as muscle activity and strength development. However, it did have a statistically significant effect on signal amplitude but not on signal frequency or MVC development in muscles involved in pulling the bowstring.Keywords: electrical activity of muscles, archery sport, shooting accuracy, muscles
Procedia PDF Downloads 632035 The Application of Sensory Integration Techniques in Science Teaching Students with Autism
Authors: Joanna Estkowska
Abstract:
The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.Keywords: autism spectrum disorder, science education, sensory integration, special educational needs
Procedia PDF Downloads 1842034 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 1122033 Optimizing Load Shedding Schedule Problem Based on Harmony Search
Authors: Almahd Alshereef, Ahmed Alkilany, Hammad Said, Azuraliza Abu Bakar
Abstract:
From time to time, electrical power grid is directed by the National Electricity Operator to conduct load shedding, which involves hours' power outages on the area of this study, Southern Electrical Grid of Libya (SEGL). Load shedding is conducted in order to alleviate pressure on the National Electricity Grid at times of peak demand. This approach has chosen a set of categories to study load-shedding problem considering the effect of the demand priorities on the operation of the power system during emergencies. Classification of category region for load shedding problem is solved by a new algorithm (the harmony algorithm) based on the "random generation list of category region", which is a possible solution with a proximity degree to the optimum. The obtained results prove additional enhancements compared to other heuristic approaches. The case studies are carried out on SEGL.Keywords: optimization, harmony algorithm, load shedding, classification
Procedia PDF Downloads 3972032 A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile
Authors: Jack Mason, Ahmad Pourmovhed
Abstract:
This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed.Keywords: interal combustion engine, battery electric vehicle, fuel cell electric vehicle, emissions
Procedia PDF Downloads 1762031 The Untreated Burden of Parkinson’s Disease: A Patient Perspective
Authors: John Acord, Ankita Batla, Kiran Khepar, Maude Schmidt, Charlotte Allen, Russ Bradford
Abstract:
Objectives: Despite the availability oftreatment options, Parkinson’s disease (PD) continues to impact heavily on a patient’s quality of life (QoL), as many symptoms that bother the patient remain unexplored and untreated in clinical settings. The aims of this research were to understand the burden of PDsymptoms from a patient perspective, particularly those which are the most persistent and debilitating, and to determine if current treatments and treatment algorithms adequately focus on their resolution. Methods: A13-question, online, patient-reported survey was created based on the MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)and symptoms listed on Parkinson’s Disease Patient Advocacy Groups websites, and then validated by 10 Parkinson’s patients. In the survey, patients were asked to choose both their most common and their most bothersome symptoms, whether they had received treatment for those and, if so, had it been effective in resolving those symptoms. Results: The most bothersome symptoms reported by the 111 participants who completed the survey were sleep problems (61%), feeling tired (56%), slowness of movements (54%), and pain in some parts of the body (49%). However, while 86% of patients reported receiving dopamine or dopamine like drugs to treat their PD, far fewer reported receiving targeted therapies for additional symptoms. For example, of the patients who reported having sleep problems, only 33% received some form of treatment for this symptom. This was also true for feeling tired (30% received treatment for this symptom), slowness of movements (62% received treatment for this symptom), and pain in some parts of the body (61% received treatment for this symptom). Additionally, 65% of patients reported that the symptoms they experienced were not adequately controlled by the treatments they received, and 9% reported that their current treatments had no effect on their symptoms whatsoever. Conclusion: The survey outcomes highlight that the majority of patients involved in the study received treatment focused on their disease, however, symptom-based treatments were less well represented. Consequently, patient-reported symptoms such as sleep problems and feeling tired tended to receive more fragmented intervention than ‘classical’ PD symptoms, such as slowness of movement, even though they were reported as being amongst the most bothersome symptoms for patients. This research highlights the need to explore symptom burden from the patient’s perspective and offer Customised treatment/support for both motor and non-motor symptoms maximize patients’ quality of life.Keywords: survey, patient reported symptom burden, unmet needs, parkinson's disease
Procedia PDF Downloads 2972030 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method
Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad
Abstract:
ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.Keywords: Gd doped ZnO, electric, optics, microstructure
Procedia PDF Downloads 4722029 A User-Friendly Approach for Design and Economic Analysis of Standalone PV System for the Electrification of Rural Area of Eritrea
Authors: Tedros Asefaw Gebremeskel, Xaoyi Yang
Abstract:
The potential of solar energy in Eritrea is relatively high, based on this truth, there are a number of isolated and remote villages situated far away from the electrical national grid which don’t get access to electricity. The core objective of this work is to design a most favorable and cost-effective power by means of standalone PV system for the electrification of a single housing in the inaccessible area of Eritrea. The sizing of the recommended PV system is achieved, such as radiation data and electrical load for the typical household of the selected site is also well thought-out in the design steps. Finally, the life cycle cost (LCC) analysis is conducted to evaluate the economic viability of the system. The outcome of the study promote the use of PV system for a residential building and show that PV system is a reasonable option to provide electricity for household applications in the rural area of Eritrea.Keywords: electrification, inaccessible area, life cycle cost, residential building, stand-alone PV system
Procedia PDF Downloads 1432028 Application of the Seismic Reflection Survey to an Active Fault Imaging
Authors: Nomin-Erdene Erdenetsogt, Tseedulam Khuut, Batsaikhan Tserenpil, Bayarsaikhan Enkhee
Abstract:
As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys.Keywords: Mogod fault, geophysics, seismic processing, seismic reflection survey
Procedia PDF Downloads 1282027 Manufacturing of Nano Zeolite by Planetary Ball Mill and Investigation of the Effects on Concrete
Authors: Kourosh Kosari
Abstract:
This study is engineering the properties of concrete containing natural nano zeolite as supplementary cementitious material in the blended Portland-cement based binder in amounts of 5,7 and 10% by mass. Crashing of clinoptilolite zeolite is performed by means of planetary ball mill. Two types of concrete along with water to cementitious material ratio (W/(C + P)) in 0.45 and 0.4 at the ages of 7, 28 and 90 days and were compared with each other. The effect of these additives on mechanical properties (compressive and tensile strength) and durability has been investigated by Electrical Resistivity (ER) and Rapid Chloride Penetration Test (RCPT) at the ages 28 and 90 days. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) revealed that nanoparticles of natural clinoptilolite could improve quality of concrete. As a result of the tests, decrease in penetration of chloride ion and increase electrical resistivity significantly that are appropriate option for controlling of corrosion in reinforced concrete structures but increase of mechanical characteristics is not considerable.Keywords: ball mill, durability, mechanical properties, nano zeolite
Procedia PDF Downloads 3202026 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration
Authors: Wei-Chia Huang, Jane Wang
Abstract:
Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation
Procedia PDF Downloads 1042025 Rotor Radial Vent Pumping in Large Synchronous Electrical Machines
Authors: Darren Camilleri, Robert Rolston
Abstract:
Rotor radial vents make use of the pumping effect to increase airflow through the active material thus reduce hotspot temperatures. The effect of rotor radial pumping in synchronous machines has been studied previously. This paper presents the findings of previous studies and builds upon their theories using a parametric numerical approach to investigate the rotor radial pumping effect. The pressure head generated by the poles and radial vent flow-rate were identified as important factors in maximizing the benefits of the pumping effect. The use of Minitab and ANSYS Workbench to investigate the key performance characteristics of radial pumping through a Design of Experiments (DOE) was described. CFD results were compared with theoretical calculations. A correlation for each response variable was derived through a statistical analysis. Findings confirmed the strong dependence of radial vent length on vent pressure head, and radial vent cross-sectional area was proved to be significant in maximising radial vent flow rate.Keywords: CFD, cooling, electrical machines, regression analysis
Procedia PDF Downloads 312