Search results for: waste materials
328 Probabilistic Study of Impact Threat to Civil Aircraft and Realistic Impact Energy
Authors: Ye Zhang, Chuanjun Liu
Abstract:
In-service aircraft is exposed to different types of threaten, e.g. bird strike, ground vehicle impact, and run-way debris, or even lightning strike, etc. To satisfy the aircraft damage tolerance design requirements, the designer has to understand the threatening level for different types of the aircraft structures, either metallic or composite. Exposing to low-velocity impacts may produce very serious internal damages such as delaminations and matrix cracks without leaving visible mark onto the impacted surfaces for composite structures. This internal damage can cause significant reduction in the load carrying capacity of structures. The semi-probabilistic method provides a practical and proper approximation to establish the impact-threat based energy cut-off level for the damage tolerance evaluation of the aircraft components. Thus, the probabilistic distribution of impact threat and the realistic impact energy level cut-offs are the essential establishments required for the certification of aircraft composite structures. A new survey of impact threat to civil aircraft in-service has recently been carried out based on field records concerning around 500 civil aircrafts (mainly single aisles) and more than 4.8 million flight hours. In total 1,006 damages caused by low-velocity impact events had been screened out from more than 8,000 records including impact dents, scratches, corrosions, delaminations, cracks etc. The impact threat dependency on the location of the aircraft structures and structural configuration was analyzed. Although the survey was mainly focusing on the metallic structures, the resulting low-energy impact data are believed likely representative to general civil aircraft, since the service environments and the maintenance operations are independent of the materials of the structures. The probability of impact damage occurrence (Po) and impact energy exceedance (Pe) are the two key parameters for describing the statistic distribution of impact threat. With the impact damage events from the survey, Po can be estimated as 2.1x10-4 per flight hour. Concerning the calculation of Pe, a numerical model was developed using the commercial FEA software ABAQUS to backward estimate the impact energy based on the visible damage characteristics. The relationship between the visible dent depth and impact energy was established and validated by drop-weight impact experiments. Based on survey results, Pe was calculated and assumed having a log-linear relationship versus the impact energy. As the product of two aforementioned probabilities, Po and Pe, it is reasonable and conservative to assume Pa=PoxPe=10-5, which indicates that the low-velocity impact events are similarly likely as the Limit Load events. Combing Pa with two probabilities Po and Pe obtained based on the field survey, the cutoff level of realistic impact energy was estimated and valued as 34 J. In summary, a new survey was recently done on field records of civil aircraft to investigate the probabilistic distribution of impact threat. Based on the data, two probabilities, Po and Pe, were obtained. Considering a conservative assumption of Pa, the cutoff energy level for the realistic impact energy has been determined, which provides potential applicability in damage tolerance certification of future civil aircraft.Keywords: composite structure, damage tolerance, impact threat, probabilistic
Procedia PDF Downloads 308327 An Audit of Climate Change and Sustainability Teaching in Medical School
Authors: Karolina Wieczorek, Zofia Przypaśniak
Abstract:
Climate change is a rapidly growing threat to global health, and part of the responsibility to combat it lies within the healthcare sector itself, including adequate education of future medical professionals. To mitigate the consequences, the General Medical Council (GMC) has equipped medical schools with a list of outcomes regarding sustainability teaching. Students are expected to analyze the impact of the healthcare sector’s emissions on climate change. The delivery of the related teaching content is, however, often inadequate and insufficient time is devoted for exploration of the topics. Teaching curricula lack in-depth exploration of the learning objectives. This study aims to assess the extent and characteristics of climate change and sustainability subjects teaching in the curriculum of a chosen UK medical school (Barts and The London School of Medicine and Dentistry). It compares the data to the national average scores from the Climate Change and Sustainability Teaching (C.A.S.T.) in Medical Education Audit to draw conclusions about teaching on a regional level. This is a single-center audit of the timetabled sessions of teaching in the medical course. The study looked at the academic year 2020/2021 which included a review of all non-elective, core curriculum teaching materials including tutorials, lectures, written resources, and assignments in all five years of the undergraduate and graduate degrees, focusing only on mandatory teaching attended by all students (excluding elective modules). The topics covered were crosschecked with GMC Outcomes for graduates: “Educating for Sustainable Healthcare – Priority Learning Outcomes” as gold standard to look for coverage of the outcomes and gaps in teaching. Quantitative data was collected in form of time allocated for teaching as proxy of time spent per individual outcomes. The data was collected independently by two students (KW and ZP) who have received prior training and assessed two separate data sets to increase interrater reliability. In terms of coverage of learning outcomes, 12 out of 13 were taught (with the national average being 9.7). The school ranked sixth in the UK for time spent per topic and second in terms of overall coverage, meaning the school has a broad range of topics taught with some being explored in more detail than others. For the first outcome 4 out of 4 objectives covered (average 3.5) with 47 minutes spent per outcome (average 84 min), for the second objective 5 out of 5 covered (average 3.5) with 46 minutes spent (average 20), for the third 3 out of 4 (average 2.5) with 10 mins pent (average 19 min). A disproportionately large amount of time is spent delivering teaching regarding air pollution (respiratory illnesses), which resulted in the topic of sustainability in other specialties being excluded from teaching (musculoskeletal, ophthalmology, pediatrics, renal). Conclusions: Currently, there is no coherent strategy on national teaching of climate change topics and as a result an unstandardized amount of time spent on teaching and coverage of objectives can be observed.Keywords: audit, climate change, sustainability, education
Procedia PDF Downloads 87326 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal
Authors: Saikat Majumdar, D. C. Kalita
Abstract:
The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.Keywords: agricultural infrastructure, adoption of technology, farm income, road network
Procedia PDF Downloads 102325 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India
Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh
Abstract:
Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.Keywords: 3D analysis, Himalayan geology, shear zone, underground power house
Procedia PDF Downloads 88324 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas
Authors: Michel Soto Chalhoub
Abstract:
Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra
Procedia PDF Downloads 232323 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector
Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini
Abstract:
Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products
Procedia PDF Downloads 151322 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 132321 Magnetofluidics for Mass Transfer and Mixing Enhancement in a Micro Scale Device
Authors: Majid Hejazian, Nam-Trung Nguyen
Abstract:
Over the past few years, microfluidic devices have generated significant attention from industry and academia due to advantages such as small sample volume, low cost and high efficiency. Microfluidic devices have applications in chemical, biological and industry analysis and can facilitate assay of bio-materials and chemical reactions, separation, and sensing. Micromixers are one of the important microfluidic concepts. Micromixers can work as stand-alone devices or be integrated in a more complex microfluidic system such as a lab on a chip (LOC). Micromixers are categorized as passive and active types. Passive micromixers rely only on the arrangement of the phases to be mixed and contain no moving parts and require no energy. Active micromixers require external fields such as pressure, temperature, electric and acoustic fields. Rapid and efficient mixing is important for many applications such as biological, chemical and biochemical analysis. Achieving fast and homogenous mixing of multiple samples in the microfluidic devices has been studied and discussed in the literature recently. Improvement in mixing rely on effective mass transport in microscale, but are currently limited to molecular diffusion due to the predominant laminar flow in this size scale. Using magnetic field to elevate mass transport is an effective solution for mixing enhancement in microfluidics. The use of a non-uniform magnetic field to improve mass transfer performance in a microfluidic device is demonstrated in this work. The phenomenon of mixing ferrofluid and DI-water streams has been reported before, but mass transfer enhancement for other non-magnetic species through magnetic field have not been studied and evaluated extensively. In the present work, permanent magnets were used in a simple microfluidic device to create a non-uniform magnetic field. Two streams are introduced into the microchannel: one contains fluorescent dye mixed with diluted ferrofluid to induce enhanced mass transport of the dye, and the other one is a non-magnetic DI-water stream. Mass transport enhancement of fluorescent dye is evaluated using fluorescent measurement techniques. The concentration field is measured for different flow rates. Due to effect of magnetic field, a body force is exerted on the paramagnetic stream and expands the ferrofluid stream into non-magnetic DI-water flow. The experimental results demonstrate that without a magnetic field, both magnetic nanoparticles of the ferrofluid and the fluorescent dye solely rely on molecular diffusion to spread. The non-uniform magnetic field, created by the permanent magnets around the microchannel, and diluted ferrofluid can improve mass transport of non-magnetic solutes in a microfluidic device. The susceptibility mismatch between the fluids results in a magnetoconvective secondary flow towards the magnets and subsequently the mass transport of the non-magnetic fluorescent dye. A significant enhancement in mass transport of the fluorescent dye was observed. The platform presented here could be used as a microfluidics-based micromixer for chemical and biological applications.Keywords: ferrofluid, mass transfer, micromixer, microfluidics, magnetic
Procedia PDF Downloads 225320 Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli
Authors: M. Shahin Alam, Satoru Takahashi, Mariko Itoh, Miyuki Komura, Mayuko Suzuki, Natthanan Sangsriratanakul, Kazuaki Takehara
Abstract:
Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry.Keywords: carrier, food additive grade calcium hydroxide (FdCa(OH)₂), quaternary ammonium compound, synergistic effects
Procedia PDF Downloads 294319 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning
Authors: Rajkumar Ghosh
Abstract:
Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery
Procedia PDF Downloads 90318 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste
Authors: Maciej Szeląg
Abstract:
The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters
Procedia PDF Downloads 246317 The Role of Structural Poverty in the Know-How and Moral Economy of Doctors in Africa: An Anthropological Perspective
Authors: Isabelle Gobatto
Abstract:
Based on an anthropological approach, this paper explores the medical profession and the construction of medical practices by considering the multiform articulations between structural poverty and the production of care from a low-resource francophone West African country, Burkina Faso. This country is considered in its exemplary dimension of culturally differentiated countries of the African continent that share the same situation of structural poverty. The objective is to expose the effects of structural poverty on the ways of constructing professional knowledge and thinking about the sense of the medical profession. If doctors are trained to have the same capacities in South and West countries, which are to treat and save lives whatever the cultural contexts of the practice of medicine, the ways of investing their role and of dealing with this context of action fracture the homogenization of the medical profession. In the line of anthropology of biomedicine, this paper outlines the complex effects of structural poverty on health care, care relations, and the moral economy of doctors. The materials analyzed are based on an ethnography including two temporalities located thirty years apart (1990-1994 and 2020-2021), based on long-term observations of care practices conducted in healthcare institutions, interviews coupled with the life histories of physicians. The findings reveal that disabilities faced by doctors to deliver care are interpreted as policy gaps, but they are also considered by physicians as constitutive of the social and cultural characteristics of patients, making their capacities and incapacities in terms of accompanying caregivers in the production of care. These perceptions have effects on know-how, structured around the need to act even when diagnoses are not made so as not to see patients desert health structures if the costs of care are too high for them. But these interpretations of highly individualizing dimensions of these difficulties place part of the blame on patients for the difficulties in using learned knowledge and delivering effective care. These situations challenge the ethics of caregivers but also of ethnologists. Firstly because the interpretations of disabilities prevent caregivers from considering vulnerabilities of care as constituting a common condition shared with their patients in these health systems, affecting them in an identical way although in different places in the production of care. Correlatively, these results underline that these professional conceptions prevent the emergence of a figure of victim, which could be shared between patients and caregivers who, together, undergo working and care conditions at the limit of the acceptable. This dimension directly involves politics. Secondly, structural poverty and its effects on care challenge the ethics of the anthropologist who observes caregivers producing, without intent to arm, experiences of care marked by an ordinary violence, by not giving them the care they need. It is worth asking how anthropologists could get doctors to think in this light in west-African societies.Keywords: Africa, care, ethics, poverty
Procedia PDF Downloads 69316 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures
Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov
Abstract:
At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells
Procedia PDF Downloads 213315 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 390314 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends
Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman
Abstract:
Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment
Procedia PDF Downloads 339313 Mental Well-Being and Quality of Life: A Comparative Study of Male Leather Tannery and Non-Tannery Workers of Kanpur City, India
Authors: Gyan Kashyap, Shri Kant Singh
Abstract:
Improved mental health can be articulated as a good physical health and quality of life. Mental health plays an important role in survival of any one’s life. In today’s time people living with stress in life due to their personal matters, health problems, unemployment, work environment, living environment, substance use, life style and many more important reasons. Many studies confirmed that the significant proportion of mental health people increasing in India. This study is focused on mental well-being of male leather tannery workers in Kanpur city, India. Environment at work place as well as living environment plays an important health risk factors among leather tannery workers. Leather tannery workers are more susceptible to many chemicals and physical hazards, just because they are liable to be affected by their exposure to lots of hazardous materials and processes during tanning work in very hazardous work environment. The aim of this study to determine the level of mental health disorder and quality of life among male leather tannery and non-tannery workers in Kanpur city, India. This study utilized the primary data from the cross- sectional household study which was conducted from January to June, 2015 on tannery and non-tannery workers as a part of PhD program from the Jajmau area of Kanpur city, India. The sample of 286 tannery and 295 non-tannery workers has been collected from the study area. We have collected information from the workers of age group 15-70 those who were working at the time of survey for at least one year. This study utilized the general health questionnaire (GHQ-12) and work related stress scale to test the mental wellbeing of male tannery and non-tannery workers. By using GHQ-12 and work related stress scale, Polychoric factor analysis method has been used for best threshold and scoring. Some of important question like ‘How would you rate your overall quality of life’ on Likert scale to measure the quality of life, their earnings, education, family size, living condition, household assets, media exposure, health expenditure, treatment seeking behavior and food habits etc. Results from the study revealed that around one third of tannery workers had severe mental health problems then non-tannery workers. Mental health problem shown the statistically significant association with wealth quintile, 56 percent tannery workers had severe mental health problem those belong to medium wealth quintile. And 42 percent tannery workers had moderate mental health problem among those from the low wealth quintile. Work related stress scale found the statistically significant results for tannery workers. Large proportion of tannery and non-tannery workers reported they are unable to meet their basic needs from their earnings and living in worst condition. Important result from the study, tannery workers who were involved in beam house work in tannery (58%) had severe mental health problem. This study found the statistically significant association with tannery work and mental health problem among tannery workers.Keywords: GHQ-12, mental well-being, factor analysis, quality of life, tannery workers
Procedia PDF Downloads 388312 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications
Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz
Abstract:
GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.Keywords: biomaterial, GFP, nano-fibers, protein expression
Procedia PDF Downloads 320311 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission
Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan
Abstract:
As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster
Procedia PDF Downloads 209310 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 237309 Causes and Consequences of Intuitive Animal Communication: A Case Study at Panthera Africa
Authors: Cathrine Scharning Cornwall-Nyquist, David Rafael Vaz Fernandes
Abstract:
Since its origins, mankind has been dreaming of communicating directly with other animals. Past civilizations interacted on different levels with other species and recognized them in their rituals and daily activities. However, recent scientific developments have limited the ability of humans to consider deeper levels of interaction beyond observation and/or physical behavior. In recent years, animal caretakers and facilities such as sanctuaries or rescue centers have been introducing new techniques based on intuition. Most of those initiatives are related to specific cases, such as the incapacity to understand an animal’s behavior. Respected organizations also include intuitive animal communication (IAC) sessions to follow up on past interventions with their animals. Despite the lack of credibility of this discipline, some animal caring structures have opted to integrate IAC into their daily routines and approaches to animal welfare. At this stage, animal communication will be generally defined as the ability of humans to communicate with animals on an intuitive level. The trend in the field remains to be explored. The lack of theory and previous research urges the scientific community to improve the description of the phenomenon and its consequences. Considering the current scenario, qualitative approaches may become a suitable pathway to explore this topic. The purpose of this case study is to explore the beliefs behind and the consequences of an approach based on intuitive animal communication techniques for Panthera Africa (PA), an ethical sanctuary located in South Africa. Due to their personal experience, the Sanctuary’s founders have developed a philosophy based on IAC while respecting the world's highest standards for big cat welfare. Their dual approach is reflected in their rescues, daily activities, and healing animals’ trauma. The case study's main research questions will be: (i) Why do they choose to apply IAC in their work? (ii) What consequences to their activities do IAC bring? (iii) What effects do IAC techniques bring in their interactions with the outside world? Data collection will be gathered on-site via: (i) Complete participation (field notes); (ii) Semi-structured interviews (audio transcriptions); (iii) Document analysis (internal procedures and policies); (iv) Audio-visual material (communication with third parties). The main researcher shall become an active member of the Sanctuary during a 30-day period and have full access to the site. Access to documents and audio-visual materials will be granted on a request basis. Interviews are expected to be held with PA founders and staff members and with IAC practitioners related to the facility. The information gathered shall enable the researcher to provide an extended description of the phenomenon and explore its internal and external consequences for Panthera Africa.Keywords: animal welfare, intuitive animal communication, Panthera Africa, rescue
Procedia PDF Downloads 95308 The Power-Knowledge Relationship in the Italian Education System between the 19th and 20th Century
Authors: G. Iacoviello, A. Lazzini
Abstract:
This paper focuses on the development of the study of accounting in the Italian education system between the 19th and 20th centuries. It also focuses on the subsequent formation of a scientific and experimental forma mentis that would prepare students for administrative and managerial activities in industry, commerce and public administration. From a political perspective, the period was characterized by two dominant movements - liberalism (1861-1922) and fascism (1922-1945) - that deeply influenced accounting practices and the entire Italian education system. The materials used in the study include both primary and secondary sources. The primary sources used to inform this study are numerous original documents issued from 1890-1935 by the government and maintained in the Historical Archive of the State in Rome. The secondary sources have supported both the development of the theoretical framework and the definition of the historical context. This paper assigns to the educational system the role of cultural producer. Foucauldian analysis identifies the problem confronted by the critical intellectual in finding a way to deploy knowledge through a 'patient labour of investigation' that highlights the contingency and fragility of the circumstances that have shaped current practices and theories. Education can be considered a powerful and political process providing students with values, ideas, and models that they will subsequently use to discipline themselves, remaining as close to them as possible. It is impossible for power to be exercised without knowledge, just as it is impossible for knowledge not to engender power. The power-knowledge relationship can be usefully employed for explaining how power operates within society, how mechanisms of power affect everyday lives. Power is employed at all levels and through many dimensions including government. Schools exercise ‘epistemological power’ – a power to extract a knowledge of individuals from individuals. Because knowledge is a key element in the operation of power, the procedures applied to the formation and accumulation of knowledge cannot be considered neutral instruments for the presentation of the real. Consequently, the same institutions that produce and spread knowledge can be considered part of the ‘power-knowledge’ interrelation. Individuals have become both objects and subject in the development of knowledge. If education plays a fundamental role in shaping all aspects of communities in the same way, the structural changes resulting from economic, social and cultural development affect the educational systems. Analogously, the important changes related to social and economic development required legislative intervention to regulate the functioning of different areas in society. Knowledge can become a means of social control used by the government to manage populations. It can be argued that the evolution of Italy’s education systems is coherent with the idea that power and knowledge do not exist independently but instead are coterminous. This research aims to reduce such a gap by analysing the role of the state in the development of accounting education in Italy.Keywords: education system, government, knowledge, power
Procedia PDF Downloads 140307 MTT Assay-Guided Isolation of a Cytotoxic Lead from Hedyotis umbellata and Its Mechanism of Action against Non-Small Cell Lung Cancer A549 Cells
Authors: Kirti Hira, A. Sajeli Begum, S. Mahibalan, Poorna Chandra Rao
Abstract:
Introduction: Cancer is one of the leading causes of death worldwide. Although existing therapy effectively kills cancer cells, they do affect normal growing cells leading to many undesirable side effects. Hence there is need to develop effective as well as safe drug molecules to combat cancer, which is possible through phyto-research. The currently available plant-derived blockbuster drugs are the example for this. In view of this, an investigation was done to identify cytotoxic lead molecules from Hedyotis umbellata (Family Rubiaceae), a widely distributed weed in India. Materials and Methods: The methanolic extract of the whole plant of H. umbellata (MHU), prepared through Soxhlet extraction method was further fractionated with diethyl ether and n-butanol, successively. MHU, ether fraction (EMHU) and butanol fraction (BMHU) were lyophilized and were tested for the cytotoxic effect using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay against non-small cell lung cancer (NSCLC) A549 cell lines. The potentially active EMHU was subjected to chromatographic purification using normal-phase silica columns, in order to isolate the responsible bioactive compounds. The isolated pure compounds were tested for their cytotoxic effect by MTT assay against A549 cells. Compound-3, which was found to be most active, was characterized using IR, 1H- and 13C-NMR and MS analysis. The study was further extended to decipher the mechanism of action of cytotoxicity of compound-3 against A549 cells through various in vitro cellular models. Cell cycle analysis was done using flow cytometry following PI (Propidium Iodide) staining. Protein analysis was done using Western blot technique. Results: Among MHU, EMHU, and BMHU, the non-polar fraction EMHU demonstrated a significant dose-dependent cytotoxic effect with IC50 of 67.7μg/ml. Chromatography of EMHU yielded seven compounds. MTT assay of isolated compounds explored compound-3 as potentially active one, which inhibited the growth of A549 cells with IC50value of 14.2μM. Further, compound-3 was identified as cedrelopsin, a coumarin derivative having molecular weight of 260. Results of in vitro mechanistic studies explained that cedrelopsin induced cell cycle arrest at G2/M phase and down-regulated the expression of G2/M regulatory proteins such as cyclin B1, cdc2, and cdc25C, dose dependently. This is the first report that explores the cytotoxic mechanism of cedrelopsin. Conclusion: Thus a potential small lead molecule, cedrelopsin isolated from H. umbellata, showing antiproliferative effect mediated by G2/M arrest in A549 cells was discovered. The effect of cedrelopsin against other cancer cell lines followed by in vivo studies can be performed in future to develop a new drug candidate.Keywords: A549, cedrelopsin, G2/M phase, Hedyotis umbellata
Procedia PDF Downloads 176306 Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts
Authors: Andrey A. Tyuftin, Rachael Reid, Paula Bourke, Patrick J. Cullen, Seamus Fanning, Paul Whyte, Declan Bolton , Joe P. Kerry
Abstract:
One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS.Keywords: active packaging, blown pack spoilage, Clostridium, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 266305 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections
Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz
Abstract:
In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process
Procedia PDF Downloads 214304 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor
Authors: Mitali Saha, Soma Das
Abstract:
The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.Keywords: coconut oil, CCNT, cholesterol, biosensor
Procedia PDF Downloads 282303 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent
Authors: Mohammad Anvari, Helen S. Joyner (Melito)
Abstract:
Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.Keywords: Camelina meal, polysaccharide, rheology, zeta potential
Procedia PDF Downloads 245302 A Study of the Effect of the Flipped Classroom on Mixed Abilities Classes in Compulsory Secondary Education in Italy
Authors: Giacoma Pace
Abstract:
The research seeks to evaluate whether students with impairments can achieve enhanced academic progress by actively engaging in collaborative problem-solving activities with teachers and peers, to overcome the obstacles rooted in socio-economic disparities. Furthermore, the research underscores the significance of fostering students' self-awareness regarding their learning process and encourages teachers to adopt a more interactive teaching approach. The research also posits that reducing conventional face-to-face lessons can motivate students to explore alternative learning methods, such as collaborative teamwork and peer education within the classroom. To address socio-cultural barriers it is imperative to assess their internet access and possession of technological devices, as these factors can contribute to a digital divide. The research features a case study of a Flipped Classroom Learning Unit, administered to six third-year high school classes: Scientific Lyceum, Technical School, and Vocational School, within the city of Turin, Italy. Data are about teachers and the students involved in the case study, some impaired students in each class, level of entry, students’ performance and attitude before using Flipped Classrooms, level of motivation, family’s involvement level, teachers’ attitude towards Flipped Classroom, goal obtained, the pros and cons of such activities, technology availability. The selected schools were contacted; meetings for the English teachers to gather information about their attitude and knowledge of the Flipped Classroom approach. Questionnaires to teachers and IT staff were administered. The information gathered, was used to outline the profile of the subjects involved in the study and was further compared with the second step of the study made up of a study conducted with the classes of the selected schools. The learning unit is the same, structure and content are decided together with the English colleagues of the classes involved. The pacing and content are matched in every lesson and all the classes participate in the same labs, use the same materials, homework, same assessment by summative and formative testing. Each step follows a precise scheme, in order to be as reliable as possible. The outcome of the case study will be statistically organised. The case study is accompanied by a study on the literature concerning EFL approaches and the Flipped Classroom. Document analysis method was employed, i.e. a qualitative research method in which printed and/or electronic documents containing information about the research subject are reviewed and evaluated with a systematic procedure. Articles in the Web of Science Core Collection, Education Resources Information Center (ERIC), Scopus and Science Direct databases were searched in order to determine the documents to be examined (years considered 2000-2022).Keywords: flipped classroom, impaired, inclusivity, peer instruction
Procedia PDF Downloads 53301 Management of Dysphagia after Supra Glottic Laryngectomy
Authors: Premalatha B. S., Shenoy A. M.
Abstract:
Background: Rehabilitation of swallowing is as vital as speech in surgically treated head and neck cancer patients to maintain nutritional support, enhance wound healing and improve quality of life. Aspiration following supraglottic laryngectomy is very common, and rehabilitation of the same is crucial which requires involvement of speech therapist in close contact with head and neck surgeon. Objectives: To examine the functions of swallowing outcomes after intensive therapy in supraglottic laryngectomy. Materials: Thirty-nine supra glottic laryngectomees were participated in the study. Of them, 36 subjects were males and 3 were females, in the age range of 32-68 years. Eighteen subjects had undergone standard supra glottis laryngectomy (Group1) for supraglottic lesions where as 21 of them for extended supraglottic laryngectomy (Group 2) for base tongue and lateral pharyngeal wall lesion. Prior to surgery visit by speech pathologist was mandatory to assess the sutability for surgery and rehabilitation. Dysphagia rehabilitation started after decannulation of tracheostoma by focusing on orientation about anatomy, physiological variation before and after surgery, which was tailor made for each individual based on their type and extent of surgery. Supraglottic diet - Soft solid with supraglottic swallow method was advocated to prevent aspiration. The success of intervention was documented as number of sessions taken to swallow different food consistency and also percentage of subjects who achieved satisfactory swallow in terms of number of weeks in both the groups. Results: Statistical data was computed in two ways in both the groups 1) to calculate percentage (%) of subjects who swallowed satisfactorily in the time frame of less than 3 weeks to more than 6 weeks, 2) number of sessions taken to swallow without aspiration as far as food consistency was concerned. The study indicated that in group 1 subjects of standard supraglottic laryngectomy, 61% (n=11) of them were successfully rehabilitated but their swallowing normalcy was delayed by an average 29th post operative day (3-6 weeks). Thirty three percentages (33%) (n=6) of the subjects could swallow satisfactorily without aspiration even before 3 weeks and only 5 % (n=1) of the needed more than 6 weeks to achieve normal swallowing ability. Group 2 subjects of extended SGL only 47 %( n=10) of them could achieved satisfactory swallow by 3-6 weeks and 24% (n=5) of them of them achieved normal swallowing ability before 3 weeks. Around 4% (n=1) needed more than 6 weeks and as high as 24 % (n=5) of them continued to be supplemented with naso gastric feeding even after 8-10 months post operative as they exhibited severe aspiration. As far as type of food consistencies were concerned group 1 subject could able to swallow all types without aspiration much earlier than group 2 subjects. Group 1 needed only 8 swallowing therapy sessions for thickened soft solid and 15 sessions for liquids whereas group 2 required 14 sessions for soft solid and 17 sessions for liquids to achieve swallowing normalcy without aspiration. Conclusion: The study highlights the importance of dysphagia intervention in supraglottic laryngectomees by speech pathologist.Keywords: dysphagia management, supraglotic diet, supraglottic laryngectomy, supraglottic swallow
Procedia PDF Downloads 232300 Maternal Risk Factors Associated with Low Birth Weight Neonates in Pokhara, Nepal: A Hospital Based Case Control Study
Authors: Dipendra Kumar Yadav, Nabaraj Paudel, Anjana Yadav
Abstract:
Background: Low Birth weight (LBW) is defined as the weight at birth less than 2500 grams, irrespective of the period of their gestation. LBW is an important indicator of general health status of population and is considered as the single most important predictors of infant mortality especially of deaths within the first month of life that is birth weight determines the chances of newborn survival. Objective of this study was to identify the maternal risk factors associated with low birth weight neonates. Materials and Methods: A hospital based case-control study was conducted in maternity ward of Manipal Teaching Hospital, Pokhara, Nepal from 23 September 2014 to 12 November 2014. During study period 59 cases were obtained and twice number of control group were selected with frequency matching of the mother`s age with ± 3 years and total controls were 118. Interview schedule was used for data collection along with record review. Data were entered in Epi-data program and analysis was done with help of SPSS software program. Results: From bivariate logistic regression analysis, eighteen variables were found significantly associated with LBW and these were place of residence, family monthly income, education, previous still birth, previous LBW, history of STD, history of vaginal bleeding, anemia, ANC visits, less than four ANC visits, de-worming status, counseling during pregnancy, CVD, physical workload, stress, extra meal during pregnancy, smoking and alcohol consumption status. However after adjusting confounding variables, only six variables were found significantly associated with LBW. Mothers who had family monthly income up to ten thousand rupees were 4.83 times more likely to deliver LBW with CI (1.5-40.645) and p value 0.014 compared to mothers whose family income NRs.20,001-60,000. Mothers who had previous still birth were 2.01 times more likely to deliver LBW with CI (0.69-5.87) and p value 0.02 compared to mothers who did not has previous still birth. Mothers who had previous LBW were 5.472 times more likely to deliver LBW with CI (1.2-24.93) and p value 0.028 compared to mothers who did not has previous LBW. Mothers who had anemia during pregnancy were 3.36 times more likely to deliver LBW with CI (0.77-14.57) and p value 0.014 compared to mothers who did not has anemia. Mothers who delivered female newborn were 2.96 times more likely to have LBW with 95% CI (1.27-7.28) and p value 0.01 compared to mothers who deliver male newborn. Mothers who did not get extra meal during pregnancy were 6.04 times more likely to deliver LBW with CI (1.11-32.7) and p value 0.037 compared to mothers who getting the extra meal during pregnancy. Mothers who consumed alcohol during pregnancy were 4.83 times more likely to deliver LBW with CI (1.57-14.83) and p value 0.006 compared to mothers who did not consumed alcohol during pregnancy. Conclusions: To reduce low birth weight baby through economic empowerment of family and individual women. Prevention and control of anemia during pregnancy is one of the another strategy to control the LBW baby and mothers should take full dose of iron supplements with screening of haemoglobin level. Extra nutritional food should be provided to women during pregnancy. Health promotion program will be focused on avoidance of alcohol and strengthen of health services that leads increasing use of maternity services.Keywords: low birth weight, case-control, risk factors, hospital based study
Procedia PDF Downloads 300299 Protective Effect of Cinnamomum zeylanicum Bark Extract against Doxorubicin Induced Cardiotoxicity: A Preliminary Study
Authors: J. A. N. Sandamali, R. P. Hewawasam, K. A. P. W. Jayatilaka, L. K. B. Mudduwa
Abstract:
Introduction: Doxorubicin is widely used in the treatment of solid organ tumors and hematological malignancies, but the dose-dependent cardiotoxicity due to free radical formation compromises its clinical utility. Therapeutic strategies which enhance cellular endogenous defense systems have been identified as promising approaches to combat oxidative stress-associated conditions. Cinnamomum zeylanicum (Ceylon cinnamon) has a number antioxidant compounds, which can effectively scavenge reactive oxygen including superoxide anions, hydroxyl radicals and as well as other free radicals. Therefore, the objective of the study was to elucidate the most effective dose of Cinnamomum bark extract which ameliorates doxorubicin-induced cardiotoxicity. Materials and methods: Wistar rats were divided into seven groups of 10 animals in each. Group 1: normal control (distilled water, orally, for 14 days, 10 mL/kg saline, ip, after 16 hours fast on the 11th day); Group 2: doxorubicin control (distilled water, orally, for 14 days, 18 mg/kg doxorubicin, ip, after 16 hour fast on the 11th day); Groups 3-7: five doses of freeze dried aqueous bark extracts (0.125, 0.25, 0.5, 1.0, 2.0g/kg, orally, daily for 14 days, 18 mg/kg doxorubicin, ip, after 16 hours fast on the 11th day). Animals were sacrificed on the 15th day and blood was collected for the estimation of cardiac troponin I (cTnI), AST and LDH concentrations and myocardial tissues were collected for histopathological assessment of myocardial damage and irreversible changes were graded by developing a score. Results: cTnI concentration of groups 1-7 were 0, 161.9, 128.6, 95.9, 38, 19.41 & 12.36 pg/mL showing significant differences (p<0.05) between group 2 and groups 4-7. In groups 1-7, serum AST concentration were 26.82, 68.1, 37.18, 36.23, 26.8, 26.62 & 22.43U/L and LDH concentrations were 1166.13, 2428.84, 1658.35, 1474.34, 1277.58, 1110.21 & 974.40U/L and a significant difference (p<0.05) was observed between group 2 and groups 3-7. The maximum score for myocardial necrosis was observed in group 2. Parallel to the increase of the dosage of plant extract, a gradual reduction of the score for myocardial necrosis was observed in groups 3-7. Reversible histological changes such as vacuolation, congestion were observed in group 2 and all plant treated groups. Haemorrhages, inflammatory cell infiltrations, and interstitial oedema were observed in group 2, but absent in groups treated with higher doses of the plant extract. Discussion & Conclusion: According to the in vitro antioxidant assays performed, Cinnamomum zeylanicum (Ceylon cinnamon) bark possesses high amounts of polyphenolic substances and high antioxidant activity. The present study showed that Cinnamomum zeylanicum extract at 2.0 g/kg possesses the most significant cardioprotective effect against doxorubicin-induced cardiotoxicity. It can be postulated that pretreatment with Cinnamomum bark extract may replenish the cardiomyocytes with antioxidants that are needed for the defense against oxidative stress induced by doxorubicin.Keywords: cardioprotection, Cinnamomum zeylanicum, doxorubicin, free radicals
Procedia PDF Downloads 163