Search results for: vector error correction model (VECM)
18046 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.Keywords: clogging, continuous casting, inclusion, simulation, submerged entry nozzle
Procedia PDF Downloads 28418045 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 19418044 TomoTherapy® System Repositioning Accuracy According to Treatment Localization
Authors: Veronica Sorgato, Jeremy Belhassen, Philippe Chartier, Roddy Sihanath, Nicolas Docquiere, Jean-Yves Giraud
Abstract:
We analyzed the image-guided radiotherapy method used by the TomoTherapy® System (Accuray Corp.) for patient repositioning in clinical routine. The TomoTherapy® System computes X, Y, Z and roll displacements to match the reference CT, on which the dosimetry has been performed, with the pre-treatment MV CT. The accuracy of the repositioning method has been studied according to the treatment localization. For this, a database of 18774 treatment sessions, performed during 2 consecutive years (2016-2017 period) has been used. The database includes the X, Y, Z and roll displacements proposed by TomoTherapy® System as well as the manual correction of these proposals applied by the radiation therapist. This manual correction aims to further improve the repositioning based on the clinical situation and depends on the structures surrounding the target tumor tissue. The statistical analysis performed on the database aims to define repositioning limits to be used as security and guiding tool for the manual adjustment implemented by the radiation therapist. This tool will participate not only to notify potential repositioning errors but also to further improve patient positioning for optimal treatment.Keywords: accuracy, IGRT MVCT, image-guided radiotherapy megavoltage computed tomography, statistical analysis, tomotherapy, localization
Procedia PDF Downloads 22618043 Spelling Errors in Persian Children with Developmental Dyslexia
Authors: Mohammad Haghighi, Amineh Akhondi, Leila Jahangard, Mohammad Ahmadpanah, Masoud Ansari
Abstract:
Background: According to the recent estimation, approximately 4%-12% percent of Iranians have difficulty in learning to read and spell possibly as a result of developmental dyslexia. The study was planned to investigate spelling error patterns among Persian children with developmental dyslexia and compare that with the errors exhibited by control groups Participants: 90 students participated in this study. 30 students from Grade level five, diagnosed as dyslexics by professionals, 30 normal 5th Grade readers and 30 younger normal readers. There were 15 boys and 15 girls in each of the groups. Qualitative and quantitative methods for analysis of errors were used. Results and conclusion: results of this study indicate similar spelling error profiles among dyslexics and the reading level matched groups, and these profiles were different from age-matched group. However, performances of dyslexic group and reading level matched group were different and inconsistent in some cases.Keywords: spelling, error types, developmental dyslexia, Persian, writing system, learning disabilities, processing
Procedia PDF Downloads 42918042 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell
Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal
Abstract:
In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC
Procedia PDF Downloads 8218041 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 20318040 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 13218039 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance
Authors: Hirokatsu Kawashima
Abstract:
One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).Keywords: auditory error recognition, intensive listening, interaction, investigation
Procedia PDF Downloads 51418038 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 21018037 Traverse Surveying Table Simple and Sure
Authors: Hamid Fallah
Abstract:
Creating surveying stations is the first thing that a surveyor learns; they can use it for control and implementation in projects such as buildings, roads, tunnels, monitoring, etc., whatever is related to the preparation of maps. In this article, the method of calculation through the traverse table and by checking several examples of errors of several publishers of surveying books in the calculations of this table, we also control the results of several software in a simple way. Surveyors measure angles and lengths in creating surveying stations, so the most important task of a surveyor is to be able to correctly remove the error of angles and lengths from the calculations and to determine whether the amount of error is within the permissible limit for delete it or not.Keywords: UTM, localization, scale factor, cartesian, traverse
Procedia PDF Downloads 8318036 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 32718035 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 16318034 Distribution of Spotted Fever Group in Ixodid Ticks, Domestic Cattle and Buffalos of Faisalabad District, Punjab, Pakistan
Authors: Muhammad Sohail Sajid, Qurat-ul-Ain, Zafar Iqbal, Muhammad Nisar Khan, Asma Kausar, Adil Ejaz
Abstract:
Rickettsiosis, caused by a Spotted Fever Group Rickettsiae (SFGR), is considered as an emerging infectious disease from public and veterinary perspective. The present study reports distribution of SFGR in the host (buffalo and cattle) and vector (ticks) population determined through gene specific amplification through PCR targeting outer membrane protein (ompA). Tick and blood samples were collected using standard protocols through convenient sampling from district Faisalabad. Ticks were dissected to extract salivary glands (SG). Blood and tick SG pools were subjected to DNA extraction and amplification of ompA using PCR. Overall prevalence of SFGR was reported as 21.5% and 33.6 % from blood and ticks, respectively. Hyalomma anatolicum was more prevalent tick associated with SFGR as compared to Rhipicephalus sp. Higher prevalence of SFGR was reported in cattle (25%) population as compared to that of buffalo (17.07%). On seasonal basis, high SFGR prevalence was recorded during spring season (48.1%, 26.32%, 17.76%) as compared to winter (27.9%, 21.43%, 15.38%) in vector and host (cattle and buffalo respectively) population. Sequencing analysis indicated that rickettsial endo-symbionts were associated with ticks of the study area. These results provided baseline information about the prevalence of SFGR in vector and host population.Keywords: Rickettsia, livestock, polymerase chain reaction, sequencing, ticks, vectors
Procedia PDF Downloads 27318033 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation
Authors: Mohammad Anwar, Shah Waliullah
Abstract:
This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model
Procedia PDF Downloads 6818032 Some Efficient Higher Order Iterative Schemes for Solving Nonlinear Systems
Authors: Sandeep Singh
Abstract:
In this article, two classes of iterative schemes are proposed for approximating solutions of nonlinear systems of equations whose orders of convergence are six and eight respectively. Sixth order scheme requires the evaluation of two vector-functions, two first Fr'echet derivatives and three matrices inversion per iteration. This three-step sixth-order method is further extended to eighth-order method which requires one more step and the evaluation of one extra vector-function. Moreover, computational efficiency is compared with some other recently published methods in which we found, our methods are more efficient than existing numerical methods for higher and medium size nonlinear system of equations. Numerical tests are performed to validate the proposed schemes.Keywords: Nonlinear systems, Computational complexity, order of convergence, Jarratt-type scheme
Procedia PDF Downloads 13818031 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria, Egypt
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Background: Leishmaniasis is a worldwide disease, affecting 88 countries, it is estimated that about 350 million people are at risk of leishmaniasis. Overall prevalence is 12 million people with annual mortality of about 60,000. Annual incidence is 1,500,000 cases of cutaneous leishmaniasis (CL) worldwide and half million cases of visceral Leishmaniasis (VL). Objectives: The objective of this study was to assess primary health care physicians knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. Methods: This study was a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study, only 20 PHP completed the questionnaire. 60 local inhabitant were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results: 11(55%) percent of the physicians had satisfactory knowledge, they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. The second part of the questionnaire is concerned with attitude of the primary health care physicians about leishmaniasis, 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandly as a vector of the disease is poor and needs to be corrected. Most of the respondents (90%) had not heard about leishmaniasis, Only 3 (5%) of the interviewed inhabitants said they know sandfly and its role in transmission of leishmaniasis. Conclusions: knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of lesihmaniasis. Moreover, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that if the inhabitants do not perceive mosquitoes to be responsible for diseases such as malaria they do not take enough measures to protect themselves against the vector.Keywords: leishmaniasis, PHP, knowledge, attitude, local inhabitants
Procedia PDF Downloads 45118030 On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α
Authors: Jay Prakash Singh
Abstract:
The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature.Keywords: LP-Sasakian manifolds, quasi-conformal curvature tensor, concircular vector field, torse forming vector field, Einstein manifold
Procedia PDF Downloads 79218029 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan
Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas
Abstract:
The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1
Procedia PDF Downloads 16918028 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 1218027 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 25518026 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error
Authors: Qianhua He, Weili Zhou, Aiwu Chen
Abstract:
A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.Keywords: speech denoising, sparse representation, k-singular value decomposition, orthogonal matching pursuit
Procedia PDF Downloads 50018025 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)
Procedia PDF Downloads 21318024 Limestone Briquette Production and Characterization
Authors: André C. Silva, Mariana R. Barros, Elenice M. S. Silva, Douglas. Y. Marinho, Diego F. Lopes, Débora N. Sousa, Raphael S. Tomáz
Abstract:
Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction.Keywords: agglomeration, briquetting, limestone, soil acidity correction
Procedia PDF Downloads 39118023 Feature Extraction and Classification Based on the Bayes Test for Minimum Error
Authors: Nasar Aldian Ambark Shashoa
Abstract:
Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach
Procedia PDF Downloads 52818022 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 1118021 The Effect of Oil Price Uncertainty on Food Price in South Africa
Authors: Goodness C. Aye
Abstract:
This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric.Keywords: oil price volatility, food price, bivariate, GARCH-in-mean VAR, asymmetric
Procedia PDF Downloads 47918020 Logistic Regression Model versus Additive Model for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event
Procedia PDF Downloads 63618019 Fast and Scale-Adaptive Target Tracking via PCA-SIFT
Authors: Yawen Wang, Hongchang Chen, Shaomei Li, Chao Gao, Jiangpeng Zhang
Abstract:
As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm.Keywords: target tracking, PCA-SIFT, mean-shift, scale-adaptive
Procedia PDF Downloads 43318018 Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine
Authors: Mandar Ghodekar, Sharad Jadhav, Sangram Jadhav
Abstract:
Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel flow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations.Keywords: gas turbine, fuzzy controller, fuzzy PI controller, power plant
Procedia PDF Downloads 33818017 Frequency of Refractive Errors in Squinting Eyes of Children from 4 to 16 Years Presenting at Tertiary Care Hospital
Authors: Maryum Nawaz
Abstract:
Purpose: To determine the frequency of refractive errors in squinting eyes of children from 4 to 16 years presenting at tertiary care hospital. Study Design: A descriptive cross-sectional study was done. Place and Duration: The study was conducted in Pediatric Ophthalmology, Hayatabad Medical Complex, Peshawar. Materials and Methods: The sample size was 146 keeping 41.45%5 proportion of refractive errors in children with squinting eyes, 95% confidence interval and 8% margin of error under WHO sample size calculations. Non-probability consecutive sampling was done. Result: Mean age was 8.57±2.66 years. Male were 89 (61.0%) and female were 57 (39.0%). Refractive error was present in 56 (38.4%) and was not present in 90 (61.6%) of patients. There was no association of gender, age, parent refractive errors, or early usage of electric equipment with the refractive errors. Conclusion: There is a high prevalence of refractive errors in a patient with strabismus. There is no association of age, gender, parent refractive errors, or early usage of electric equipment in the occurrence of refractive errors. Further studies are recommended for confirmation of these.Keywords: strabismus, refractive error, myopia, hypermetropia, astigmatism
Procedia PDF Downloads 145