Search results for: trained graphic designers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1742

Search results for: trained graphic designers

932 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 124
931 Assessment of Environmental Impacts and Determination of Sustainability Level of BOOG Granite Mine Using a Mathematical Model

Authors: Gholamhassan Kakha, Mohsen Jami, Daniel Alex Merino Natorce

Abstract:

Sustainable development refers to the creation of a balance between the development and the environment too; it consists of three key principles namely environment, society and economy. These three parameters are related to each other and the imbalance occurs in each will lead to the disparity of the other parts. Mining is one of the most important tools of the economic growth and social welfare in many countries. Meanwhile, assessment of the environmental impacts has directed to the attention of planners toward the natural environment of the areas surrounded by mines and allowing for monitoring and controlling of the current situation by the designers. In this look upon, a semi-quantitative model using a matrix method is presented for assessing the environmental impacts in the BOOG Granite Mine located in Sistan and Balouchestan, one of the provinces of Iran for determining the effective factors and environmental components. For accomplishing this purpose, the initial data are collected by the experts at the next stage; the effect of the factors affects each environmental component is determined by specifying the qualitative viewpoints. Based on the results, factors including air quality, ecology, human health and safety along with the environmental damages resulted from mining activities in that area. Finally, the results gained from the assessment of the environmental impact are used to evaluate the sustainability by using Philips mathematical model. The results show that the sustainability of this area is weak, so environmental preventive measures are recommended to reduce the environmental damages to its components.

Keywords: sustainable development, environmental impacts' assessment, BOOG granite, Philips mathematical model

Procedia PDF Downloads 196
930 The Voice Rehabilitation Program Following Ileocolon Flap Transfer for Voice Reconstruction after Laryngectomy

Authors: Chi-Wen Huang, Hung-Chi Chen

Abstract:

Total laryngectomy affects swallowing, speech functions and life quality in the head and neck cancer. Voice restoration plays an important role in social activities and communication. Several techniques have been developed for voice restoration and reported to improve the life quality. However, the rehabilitation program for voice reconstruction by using the ileocolon flap still unclear. A retrospective study was done, and the patients' data were drawn from the medical records between 2010 and 2016 who underwent voice reconstruction by ileocolon flap after laryngectomy. All of them were trained to swallow first; then, the voice rehabilitation was started. The outcome of voice was evaluated after 6 months using the 4-point scoring scale. In our result, 9.8% patients could give very clear voice so everyone could understand their speech, 61% patients could be understood well by families and friends, 20.2% patients could only talk with family, and 9% patients had difficulty to be understood. Moreover, the 57% patients did not need a second surgery, but in 43% patients voice was made clear by a second surgery. In this study, we demonstrated that the rehabilitation program after voice reconstruction with ileocolon flap for post-laryngectomy patients is important because the anatomical structure is different from the normal larynx.

Keywords: post-laryngectomy, ileocolon flap, rehabilitation, voice reconstruction

Procedia PDF Downloads 154
929 Diaspora by Design; Jewish Refugee Architects and Wellington City

Authors: Daniele Abreu e Lima, Chloe Fitzpatrick

Abstract:

During the 1930s, New Zealand received a wave of refugees feeling from the impeding war and atrocities the Nazi regime was imposing on the German people. Among the hundreds of refugees were highly trained artists, architects and musicians who made a huge contribution to Wellington’s culture and identity. It is unfeasible to chronicle the impact of every Jewish refugee in the development of New Zealand arts scene. But it is possible to choose a number of them and analyse their contribution to NZ culture. This research aims to bring to light the reception and life of five influential Jewish architects; Helmut Einhorn, Ernst Plischke, Frederick Neumann, Henry Kulka, and Maximillian Rosenfeld. Each had a key role in influencing New Zealand architectural landscape and the modernization of the country. Before coming to New Zealand, these five architects lived different lives working all over Europe, from Paris through to Moscow. In common, apart from their ethnicity, they had led cultured lives where they were culturally and politically active. This research looks at how much their individual contributions helped to transform the architectural scene in New Zealand but also in the amount of cultural and religious renunciation they had to endure to be accepted in the country.

Keywords: Jewish Refugee architects, modern architecture, World War 2, New Zealand

Procedia PDF Downloads 53
928 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 494
927 Perceived Needs on Teaching-Learning Activities among Basic Education Teachers as Reflected in Their In-Service Teacher Training

Authors: Cristie Ann Jaca-Delfin, Felino Javines Jr.

Abstract:

Teachers especially those who are teaching elementary and high school students need to upgrade their teaching practices in order to become effective and efficient facilitators of learning. It is in this context that this study is conducted in order to present the perceived teaching-learning activities needs among basic education teachers in the three campuses of the University of San Carlos, Cebu City, the Philippines as expressed during their In-Service Teacher Training. The study employed the quantitative-qualitative research design and used the researcher-made survey questionnaire to look into the ten items under Teaching-Learning Activities to determine which item teachers need to be trained and retrained on. The data were solicited during the teachers’ In-Service Teacher Training period conducted in May 2015. It was found out that designing interesting and meaningful classroom activities, strategies in teaching and assessment procedures were identified as the most needed areas teachers want to be included in their in-service training. As these expressed needs were identified, the teachers’ in-service training must a venue for teachers’ instructional development needs to be addressed so as to maximize the students’ learning outcomes

Keywords: in-service teacher training, perceived needs, teaching-learning activities, teaching practices

Procedia PDF Downloads 321
926 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 67
925 Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System

Authors: H. R. Vosoughifar, Seyedeh Zeinab. Hosseininejad, Nahid Shabazi, Seyed Mohialdin Hosseininejad

Abstract:

In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated.

Keywords: optimal bracing system, high-rise structure, finite element analysis (FEA), seismic stress

Procedia PDF Downloads 428
924 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 121
923 The Communication Between Visual Aesthetic Criteria of Product with User Experience and Social Sustainability: A Study of Street Furniture

Authors: Hassan Sadeghi Naeini, Mozhgan Sabzehparvar, Mahdiye Jafarnezhad, Neda Brumandi, Mohammad Parsa Sabzehparvar

Abstract:

This study aims to discover the relationship between the factors of aesthetics, user experience, and social sustainability concerning the design of street furniture and the impact of these factors on the emotional arousal of citizens to encourage and make them prefer to use street furniture. The method used in this research included extracting indicators related to each of the factors of aesthetics, user experience, and social sustainability from the articles and then selecting indicators related to the purpose of the research in consultation with industrial design experts and architects. Finally, 9 variables for aesthetics, 7 variables for user experience, and 5 variables for evaluating social sustainability were selected. To identify the effect of each of these factors on street furniture and to recognize their relationship with each other. A 10-scale prioritization questionnaire, from 1, the least amount of importance, to 10, the most amount of importance, was answered by architects and industrial designers on the “Pors Line” online platform for three consecutive weeks, and a total of 82 people answered the questionnaire. The results showed that by using aesthetic factors in the design of street furniture and having a positive impact on users’ experience of using the product, we could expect the occurrence of behavioral factors, such as creating constructive interaction and product acceptance so that the satisfaction of the user in the use of street furniture and optimal interaction in the urban environment is formed, followed by that, the requirements of social sustainability will be met.

Keywords: visual aesthetic, user experience, social sustainability, street furniture

Procedia PDF Downloads 95
922 Psychometric Analysis of Educators’ Perceptions of North Carolina’s School-Based Mental Health Policy

Authors: Kathryn Watson

Abstract:

In 2020 North Carolina passed legislation mandating all educators be trained in identifying, referring, and supporting students showing signs of mental health issues, drug use, suicidal ideation, and sex trafficking. This study collected survey responses from 226 educators in North Carolina to better understand their perspectives on the legislation and their self-efficacy in supporting student mental health needs. Key findings of the study reveal that the mandated trainings increased educator awareness of student mental health, and higher awareness was linked to higher self-efficacy in supporting student mental health needs. Additionally, the results showed that educators who identify as Black had lower levels of self-efficacy in supporting student mental health. Additionally, rural educators were least likely to support the legislation in comparison to their urban and suburban counterparts. These findings can help inform policymakers in evaluating the policy and district decision-makers in selecting and implementing school-based mental health training.

Keywords: school-based mental health, education policy, student health, North Carolina, K-12 education

Procedia PDF Downloads 57
921 Applications of Drones in Infrastructures: Challenges and Opportunities

Authors: Jin Fan, M. Ala Saadeghvaziri

Abstract:

Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.

Keywords: bridge, construction, drones, infrastructure, information

Procedia PDF Downloads 122
920 Public Squares and Their Potential for Social Interactions: A Case Study of Historical Public Squares in Tehran

Authors: Asma Mehan

Abstract:

Under the thrust of technological changes, population growth and vehicular traffic, Iranian historical squares have lost their significance and they are no longer the main social nodes of the society. This research focuses on how historical public squares can inspire designers to enhance social interactions among citizens in Iranian urban context. Moreover, the recent master plan of Tehran demonstrates the lack of public spaces designed for the purpose of people’s social gatherings. For filling this gap, first the current situation of 7 selected primary historical public squares in Tehran including Sabze Meydan, Arg, Topkhaneh, Baherstan, Mokhber-al-dole, Rah Ahan and Hassan Abad have been compared. Later, the influencing elements on social interactions of the public squares such as subjective factors (human relationships and memories) and objective factors (natural and built environment) have been investigated. As a conclusion, some strategies are proposed for improving social interactions in historical public squares like; holding cultural, national, athletic and religious events, defining different and new functions in public squares’ surrounding, increasing pedestrian routs, reviving the collective memory, demonstrating the historical importance of square, eliminating visual obstacles across the square, organization the natural elements of the square, appropriate pavement for social activities. Finally, it is argued that the combination of all influencing factors which are: human interactions, natural elements and built environment criteria will lead to enhance the historical public squares’ potential for social interaction.

Keywords: historical square, Iranian public square, social interaction, Tehran

Procedia PDF Downloads 403
919 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 170
918 Neural Network Approach to Classifying Truck Traffic

Authors: Ren Moses

Abstract:

The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.

Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions

Procedia PDF Downloads 309
917 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 403
916 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 148
915 Prevalence and Risk Factors of Diabetes and Its Association with Com-Morbidities among South Indian Women

Authors: Balasaheb Bansode

Abstract:

Diabetes is a very important component in non-communicable diseases. Diabetes ailment is a route of the multi-morbidities ailments. The South Indian states are almost completing the demographic transition in India. The study objectives present the prevalence of diabetes and its association with co-morbidities among the south Indian women. The study based on National Family Health Survey fourth round (NFHS) 4 conducted in 2015-16. The univariate, bivariate and multivariate analyses techniques have been used to find the association of risk factors and comorbidities with diabetics. The result reveals that the prevalence of diabetes is high among South Indian women. The study shows the women with diabetics have more chances to diagnose with hypertension and anemia comorbidities. The factors responsible for co-morbidities are changing the demographic situation, socioeconomic status, overweight and addict with substance use in South India. The awareness about diabetes prevention and management should be increased through health education, disease management programmes, trained peers and community health workers and community-based programmes.

Keywords: diabetes, risk factors, comorbidities, women

Procedia PDF Downloads 183
914 Generating Insights from Data Using a Hybrid Approach

Authors: Allmin Susaiyah, Aki Härmä, Milan Petković

Abstract:

Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.

Keywords: data mining, insight mining, natural language generation, pre-trained language models

Procedia PDF Downloads 117
913 Enhancing Wayfinding and User Experience in Hospital Environments: A Study of University Medical Centre Ljubljana

Authors: Nastja Utrosa, Matevz Juvancic

Abstract:

Hospital buildings are complex public environments characterized by intricate functional arrangements and architectural layouts. Effective wayfinding is essential for patients, visitors, students, and staff. However, spatial orientation planning is often overlooked until after construction. While these environments meet functional needs, they frequently neglect the psychological aspects of user experience. This study investigates wayfinding within complex urban healthcare environments, focusing on the influences of spatial design, spatial cognition, and user experience. The inherent complexity of these environments, with extensive spatial dimensions and dispersed buildings, exacerbates the problem. Gradual expansions and additions contribute to disorientation and navigational difficulties for users. Effective route guidance in urban healthcare settings has become increasingly crucial. However, research on the environmental elements that influence wayfinding in such environments remains limited. To address this gap, we conducted a study at the University Medical Centre Ljubljana (UMCL), Slovenia's largest university hospital. Using a questionnaire, we assessed how individuals' perceptions and use of outdoor hospital spaces with a diverse sample (n=179). We evaluated the area’s usability by analyzing visit frequency, stops, modes of arrival, and parking patterns and examined the visitors' age distribution. Additionally, we investigated spatial aids and the use of color as an orientation element at three specific locations within the medical center. Our study explored the impact of color on entrance selection and the effectiveness of warm versus cool colors for wayfinding. Our findings highlight the significance of graphic adjustments in shaping perceptions of hospital outdoor spaces. Most participants preferred visually organized entrances, underscoring the importance of effective visual communication. Implementing these adaptations can substantially enhance the user experience, reducing stress and increasing satisfaction in hospital environments.

Keywords: hospital layout design, healthcare facilities, wayfinding, navigational aids, spatial orientation, color, signage

Procedia PDF Downloads 43
912 Factors Related to Protective Behavior on Indoor Pollution among Pregnant Women in Nakhon Pathom Province, Thailand

Authors: Yuri Teraoka, Cheerawit Rattanapan, Aroonsri Mongkolchati

Abstract:

This cross sectional analytic study was carried out to determine factors related to protective behavior on indoor pollution among pregnant women in Nakhon Pathom province, Thailand. A total of 319 pregnant women were enrolled at three antenatal care clinics in community hospital. Data were collected using simple random sampling from April 2015 to May 2015 using a structured self-administration questionnaire by well-trained research assistants. The result showed that around 73% pregnant women showed low level of low protective behavior on indoor pollution. Chi-square and multiple logistic regression were used to examine the factors and protective behavior on indoor pollution. After adjusting for confounding factors, this study found that tobacco smoking before pregnancy (AOR=2.15, 95% CI: 0.78-5.95) and low environmental health hazard (AOR=1.94, 95% CI: 1.09-3.49) were significant factors related to protective behavior on indoor pollution among pregnant women (p-value < 0.05). In conclusion, this study suggested that environmental health education campaign and environmental implementation program among pregnant woman are needed.

Keywords: Thailand, environmental health, protective behavior, pregnant women

Procedia PDF Downloads 363
911 Use of Oral Communication Strategies: A Study of Bangladeshi EFL Learners at the Graduate Level

Authors: Afroza Akhter Tina

Abstract:

This paper reports on an investigation into the use of specific types of oral communication strategies, namely ‘topic avoidance’, ‘message abandonment’, ‘code-switching’, ‘paraphrasing’, ‘restructuring’, and ‘stalling’ by Bangladeshi EFL learners at the graduate level. It chiefly considers the frequency of using these strategies as well as the students and teachers attitudes toward such uses. The participants of this study are 66 EFL students and 12 EFL teachers of Jahangirnagar University. Data was collected through questionnaire, oral interview, and classroom observation form. The findings reveal that the EFL students tried to employ all the strategies to various extents due to the language difficulties they encountered in their oral English performance. Among them, the mostly used strategy was ‘stalling’ or the use of fillers, followed by ‘code-switching’. The least used strategies were ‘topic avoidance’, ‘restructuring’, and ‘paraphrasing’. The findings indicate that the use of such strategies was related to the contexts of situation and data-elicitation tasks. It also reveals that the students were not formally trained to use the strategies though the majority of the teachers and students acknowledge them as helpful in communication. Finally the study suggests that an awareness of the nature and functions of these strategies can contribute to the overall improvement of the learners’ communicative competence in spoken English.

Keywords: communicative strategies, competency, attitude, frequency

Procedia PDF Downloads 407
910 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 173
909 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.

Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady

Procedia PDF Downloads 180
908 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 194
907 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.

Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition

Procedia PDF Downloads 455
906 Cache Analysis and Software Optimizations for Faster on-Chip Network Simulations

Authors: Khyamling Parane, B. M. Prabhu Prasad, Basavaraj Talawar

Abstract:

Fast simulations are critical in reducing time to market in CMPs and SoCs. Several simulators have been used to evaluate the performance and power consumed by Network-on-Chips. Researchers and designers rely upon these simulators for design space exploration of NoC architectures. Our experiments show that simulating large NoC topologies take hours to several days for completion. To speed up the simulations, it is necessary to investigate and optimize the hotspots in simulator source code. Among several simulators available, we choose Booksim2.0, as it is being extensively used in the NoC community. In this paper, we analyze the cache and memory system behaviour of Booksim2.0 to accurately monitor input dependent performance bottlenecks. Our measurements show that cache and memory usage patterns vary widely based on the input parameters given to Booksim2.0. Based on these measurements, the cache configuration having least misses has been identified. To further reduce the cache misses, we use software optimization techniques such as removal of unused functions, loop interchanging and replacing post-increment operator with pre-increment operator for non-primitive data types. The cache misses were reduced by 18.52%, 5.34% and 3.91% by employing above technology respectively. We also employ thread parallelization and vectorization to improve the overall performance of Booksim2.0. The OpenMP programming model and SIMD are used for parallelizing and vectorizing the more time-consuming portions of Booksim2.0. Speedups of 2.93x and 3.97x were observed for the Mesh topology with 30 × 30 network size by employing thread parallelization and vectorization respectively.

Keywords: cache behaviour, network-on-chip, performance profiling, vectorization

Procedia PDF Downloads 196
905 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 254
904 Assessment of Teacher Qualification Status of University Teachers in North West Nigeria; Bayero University Kano in Perspective

Authors: Collins Augustine Ekpiwre

Abstract:

Both the National Policy on Education (NPE) and the Teachers’ Registration Council of Nigeria (TRCN) gave the directive that all teachers in Nigerian schools should be trained teachers to enable them to be more effective in their teaching responsibilities. This applies to university teachers as well; they are required to acquire teacher qualifications such as Post Graduate Diploma in Education (PGDE) or Professional Diploma in Education (PDE) or Technical Teachers Certificate (TTC) or at least, National Certificate of Education (NCE) in addition to possessing academic qualifications in their specialized areas of study. It is on this ground that this study carried out an assessment of university teachers’ qualification status in Bayero University, Kano. The population of the study comprised all the teachers in the university. Data was collected through an examination of the documented official records of the qualification profile of all the teachers in the university obtained from its various faculties. The collected data was analyzed through descriptive statistic of simple percentage and frequency. Based on the findings of the study and in order to strengthen the teacher qualification status of teachers in the university, a few recommendations, for example, special salary scale should be made available to university teachers with appropriate teacher qualifications, were offered.

Keywords: Teacher, university teacher, teacher qualification, university education

Procedia PDF Downloads 426
903 Analysis and Comparison of Prototypes of an Ergometric Step in a Multidisciplinary Design Process

Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, L. Di Thommazo, D. Braatz

Abstract:

Prototypes can be understood as representations of a product concept. Furthermore, prototyping consists in an important stage in product development and results in better team communication, decision making, testing and problem solving through feedback. Although there are several methods of prototyping suggested by recent studies for designers to choose from, some methods present different advantages, such as cost and time reduction, performance and fidelity, which should be taken in account during a product development project. In this multidisciplinary study, involving areas of physiotherapy, engineering and computer science (hardware and software), we compared four developed prototypes of an ergometric step: a virtual prototype, a 3D printed prototype, a bricolage prototype and a prototype manufactured by a third-party company. These prototypes were evaluated in a comparative-qualitative approach for their contribution to the concept’s maturation of the product, the different prototyping methods used and the advantages and disadvantages of each one based on the product’s design specifications (performance, safety, materials, cost, maintenance, usability, ergonomics and portability). Our results indicated that despite prototypes show overall advantages, all of them have limitations, thus being crucial to have different methods of testing and interacting with the product. Additionally, virtual and 3D printed prototypes were essential at early stages of the project due to their low-cost and high-fidelity representation of the product, while the prototype manufactured by a third-party company and bricolage prototype introduced functional tests in real scenarios, allowing more detailed evaluations. This study also resulted in a patent for an ergometric step.

Keywords: Product Design, Product Development, Prototypes, Step

Procedia PDF Downloads 115