Search results for: threshold detecting
732 Percentile Reference Values of Vertical Jumping Performances and Anthropometric Characteristics in Athletic Tunisian Children and Adolescents
Authors: Chirine Aouichaoui, Mohamed Tounsi, Ines Mrizak, Zouhair Tabka, Yassine Trabelsi
Abstract:
The aim of this study was to provide percentile values for vertical jumping performances and anthropometric characteristics for athletic Tunisian children. One thousand and fifty-five athletic Tunisian children and adolescents (643 boys and 412 girls) aged 7-18 years were randomly selected to participate in our study. They were asked to perform squat jumps and countermovement jumps. For each measurement, a least square regression model with high order polynomials was fitted to predict mean and standard deviation of vertical jumping parameters and anthropometric variables. Smoothed percentile curves and percentile values for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles are presented for boys and girls. In conclusion, percentiles values of vertical jumping performances and anthropometric characteristics are provided. The new Tunisian reference charts obtained can be used as a screening tool to determine growth disorders and to estimate the proportion of adolescents with high or low muscular strength levels. This study may help in verifying the effectiveness of a specific training program and detecting highly talented athletes.Keywords: percentile values, jump height, leg muscle power, athletes, anthropometry
Procedia PDF Downloads 428731 Early Detection of Instability in Emulsions via Diffusing Wave Spectroscopy
Authors: Coline Bretz, Andrea Vaccaro, Dario Leumann
Abstract:
The food, personal care, and cosmetic industries are seeing increased consumer demand for more sustainable and innovative ingredients. When developing new formulations incorporating such ingredients, stability is one of the first criteria that must be assessed, and it is thus of great importance to have a method that can detect instabilities early and quickly. Diffusing Wave Spectroscopy (DWS) is a light scattering technique that probes the motion,i.e., the mean square displacement (MSD), of colloids, such as nanoparticles in a suspension or droplets in emulsions. From the MSD, the rheological properties of the surrounding medium can be determined via the so-called microrheology approach. In the case of purely viscous media, it is also possible to obtain information about particle size. DWS can thus be used to monitor the size evolution of particles, droplets, or bubbles in aging dispersions, emulsions, or foams. In the context of early instability detection in emulsions, DWS offers considerable advantages, as the samples are measured in a contact-free manner, using only small quantities of samples loaded in a sealable cuvette. The sensitivity and rapidity of the technique are key to detecting and following the ageing of emulsions reliably. We present applications of DWS focused on the characterization of emulsions. In particular, we demonstrate the ability to record very subtle changes in the structural properties early on. We also discuss the various mechanisms at play in the destabilization of emulsions, such as coalescence or Ostwald ripening, and how to identify them through this technique.Keywords: instrumentation, emulsions, stability, DWS
Procedia PDF Downloads 64730 RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired
Authors: Jayron Sanchez, Analyn Yumang, Felicito Caluyo
Abstract:
The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules.Keywords: A* algorithm, RFID technology, ultrasonic sensor, ZigBee module
Procedia PDF Downloads 409729 Detection of Elephant Endotheliotropic Herpes Virus in a Wild Asian Elephant Calf in Thailand by Using Real-Time PCR
Authors: Bopit Puyati, Anchittha Kaewchana, Nuntita Ruksachat
Abstract:
In January 2018, a male wild elephant, approximately 2 years old, was found dead in Phu Luang Wildlife Sanctuary, Loei province. The elephant was likely to die around 2 weeks earlier. The carcass was decayed without any signs of attack or bullet. No organs were removed. A deadly viral disease was suspected. Different organs including lung, liver, intestine and tongue were collected and submitted to the veterinary research and development center, Surin province for viral detection. The samples were then examined with real-time PCR for detecting U41 Major DNA binding protein (MDBP) gene and with conventional PCR for the presence of specific polymerase gene. We used tumor necrosis factor (TNF) gene as the internal control. In our real-time PCR, elephant endotheliotropic herpesvirus (EEHV) was recovered from lung, liver, and tongue whereas only tongue provided a positive result in the conventional PCR. All samples were positive with TNF gene detection. To our knowledge, this is the first report of EEHV detection in wild elephant in Thailand. EEHV surveillance in this wild population is strongly suggested. Linkage between EEHV in wild and domestic elephants should be further explored.Keywords: elephant endotheliotropic herpes virus, PCR, Thailand, wild Asian elephant
Procedia PDF Downloads 143728 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks
Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi
Abstract:
In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward
Procedia PDF Downloads 581727 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)
Authors: M. Kessi
Abstract:
We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force
Procedia PDF Downloads 181726 The Ultimate Scaling Limit of Monolayer Material Field-Effect-Transistors
Authors: Y. Lu, L. Liu, J. Guo
Abstract:
Monolayer graphene and dichaclogenide semiconductor materials attract extensive research interest for potential nanoelectronics applications. The ultimate scaling limit of double gate MoS2 Field-Effect-Transistors (FETs) with a monolayer thin body is examined and compared with ultra-thin-body Si FETs by using self-consistent quantum transport simulation in the presence of phonon scattering. Modelling of phonon scattering, quantum mechanical effects, and self-consistent electrostatics allows us to accurately assess the performance potential of monolayer MoS2 FETs. The results revealed that monolayer MoS2 FETs show 52% smaller Drain Induced Barrier Lowering (DIBL) and 13% Smaller Sub-Threshold Swing (SS) than 3 nm-thick-body Si FETs at a channel length of 10 nm with the same gating. With a requirement of SS<100mV/dec, the scaling limit of monolayer MoS2 FETs is assessed to be 5 nm, comparing with 8nm of the ultra-thin-body Si counterparts due to the monolayer thin body and higher effective mass which reduces direct source-to-drain tunnelling. By comparing with the ITRS target for high performance logic devices of 2023; double gate monolayer MoS2 FETs can fulfil the ITRS requirements.Keywords: nanotransistors, monolayer 2D materials, quantum transport, scaling limit
Procedia PDF Downloads 234725 Machine Learning Based Smart Beehive Monitoring System Without Internet
Authors: Esra Ece Var
Abstract:
Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture
Procedia PDF Downloads 239724 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 178723 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 74722 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 123721 Optimization of Energy Harvesting Systems for RFID Applications
Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur
Abstract:
To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.Keywords: RFID tag, energy harvesting, piezoelectric, EM waves
Procedia PDF Downloads 452720 Robotics and Embedded Systems Applied to the Buried Pipeline Inspection
Authors: Robson C. Santos, Julio C. P. Ribeiro, Iorran M. de Castro, Luan C. F. Rodrigues, Sandro R. L. Silva, Diego M. Quesada
Abstract:
The work aims to develop a robot in the form of autonomous vehicle to detect, inspection and mapping of underground pipelines through the ATmega328 Arduino platform. Hardware prototyping very similar to C / C ++ language that facilitates its use in robotics open source, resembles PLC used in large industrial processes. The robot will traverse the surface independently of direct human action, in order to automate the process of detecting buried pipes, guided by electromagnetic induction. The induction comes from coils that sends the signal to the Arduino microcontroller contained in that will make the difference in intensity and the treatment of the information, then this determines actions to electrical components such as relays and motors, allowing the prototype to move on the surface and getting the necessary information. The robot was developed by electrical and electronic assemblies that allowed test your application. The assembly is made up of metal detector coils, circuit boards and microprocessor, which interconnected circuits previously developed can determine, process control and mechanical actions for a robot (autonomous car) that will make the detection and mapping of buried pipelines plates.Keywords: robotic, metal detector, embedded system, pipeline inspection
Procedia PDF Downloads 614719 Evaluation of the Accuracy of a ‘Two Question Screening Tool’ in the Detection of Intimate Partner Violence in a Primary Healthcare Setting in South Africa
Authors: A. Saimen, E. Armstrong, C. Manitshana
Abstract:
Intimate partner violence (IPV) has been recognised as a global human rights violation. It is universally under diagnosed and the institution of timeous multi-faceted interventions has been noted to benefit IPV victims. Currently, the concept of using a screening tool to detect IPV has not been widely explored in a primary healthcare setting in South Africa, and it was for this reason that this study has been undertaken. A systematic random sampling of 1 in 8 women over a period of 3 months was conducted prospectively at the OPD of a Level 1 Hospital. Participants were asked about their experience of IPV during the past 12 months. The WAST-short, a two-question tool, was used to screen patients for IPV. To verify the result of the screening, women were also asked the remaining questions from the WAST. Data was collected from 400 participants, with a response rate of 99.3%. The prevalence of IPV in the sample was 32%. The WAST-short was shown to have the following operating characteristics: sensitivity 45.2%, specificity 98%,positive predictive value 98%, negative predictive value 79%. The WAST-short lacks sufficient sensitivity and therefore is not an ideal screening tool for this setting. Improvement in the sensitivity of the WAST-short in this setting may be achieved by lowering the threshold for a positive result for IPV screening, and modification of the screening questions to better reflect IPV as understood by the local population.Keywords: domestic violence, intimate partner violence, screening, screening tools
Procedia PDF Downloads 305718 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6
Authors: M. Moslehpour, S. Khorsandi
Abstract:
Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing
Procedia PDF Downloads 278717 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 667716 Comparison of Automated Zone Design Census Output Areas with Existing Output Areas in South Africa
Authors: T. Mokhele, O. Mutanga, F. Ahmed
Abstract:
South Africa is one of the few countries that have stopped using the same Enumeration Areas (EAs) for census enumeration and dissemination. The advantage of this change is that confidentiality issue could be addressed for census dissemination as the design of geographic unit for collection is mainly to ensure that this unit is covered by one enumerator. The objective of this paper was to evaluate the performance of automated zone design output areas against non-zone design developed geographies using the 2001 census data, and 2011 census to some extent, as the main input. The comparison of the Automated Zone-design Tool (AZTool) census output areas with the Small Area Layers (SALs) and SubPlaces based on confidentiality limit, population distribution, and degree of homogeneity, as well as shape compactness, was undertaken. Further, SPSS was employed for validation of the AZTool output results. The results showed that AZTool developed output areas out-perform the existing official SAL and SubPlaces with regard to minimum population threshold, population distribution and to some extent to homogeneity. Therefore, it was concluded that AZTool program provides a new alternative to the creation of optimised census output areas for dissemination of population census data in South Africa.Keywords: AZTool, enumeration areas, small areal layers, South Africa
Procedia PDF Downloads 183715 Validating the Arabic Communicative Development Inventory for Assessing the Development of Language in Arabic-Speaking Children
Authors: Alshaimaa Abdelwahab, Allegra Cattani, Caroline Floccia
Abstract:
Assessing children’s language is fundamental for changing their developmental outcome as it gives a chance for a quick and early intervention with the suitable planning and monitoring program. The importance of language assessment lies in helping to find the right test fit for purpose, in addition to achievement and proficiency. This study examines the validity of a new Arabic assessment tool, the Arabic Communicative Development Inventory ‘Arabic CDI’. It assesses the development of language in Arabic children in different Arabic countries, allowing to detect children with language delay. A concurrent validity is set to compare the Arabic CDI to the Arabic Language test. Twenty-three typically developing Egyptian healthy children and their mothers participated in this study. Their age is 24 months (+ or -) two weeks. The sample included 13 males and 10 females. Mothers completed the Arabic CDI either before or after the Arabic Language Test was conducted with the child. The score for comprehension in the Arabic CDI (M= 52.7, SD= 9.7) and words understood in the Arabic Language Test (M= 59.6, SD= 12.5) were strongly and positively correlated (r= .62, p= .002). At the same time, the scores for production in the Arabic CDI (M= 38.4, SD= 14.8) and words expressed in the Arabic Language Test (M= 52.1, SD= 16.3) were also strongly and positively correlated (r= .82, p= .000). The new Arabic CDI is an adequate tool for assessing the development of comprehension and production at Arabic children. In addition, it could be used for detecting children with language impairment. Standardization of the Arabic CDI across 18 different Arabic dialects in children aged 8 to 30 months is underway.Keywords: Arabic CDI, assessing children, language development, language impairment
Procedia PDF Downloads 469714 A Study of the Tactile Codification on the Philippine Banknote: Redesigning for the Blind
Authors: Ace Mari S. Simbajon, Rhaella J. Ybañez, Mae G. Nadela, Cherry E. Sagun, Nera Mae A. Puyo
Abstract:
This study determined the usability of the Philippine banknotes. An experimental design was used in the study involving twenty (n=20) randomly selected blind participants. The three aspects of usability were measured: effectiveness, efficiency, and satisfaction. It was found out that the effectiveness rate of the current Philippine Banknotes ranges from 20 percent to 35 percent which means it is not effective basing from Cauro’s threshold of average effectiveness rate which is 78 percent. Its efficiency rate is ranging from 18.06 to 26.22 seconds per denomination. The average satisfaction rate is 1.45 which means the blind are very dissatisfied. These results were used as a guide in making the proposed tactile codification using embossed dots or embossed lines. A round of simulation was conducted with the blind to assess the usability of the two proposals. Results were then statistically treated using t-test. Results show statistically significant difference between the usability of the current banknotes versus the proposed designs. Moreover, it was found out that the use of embossed dots is more effective, more efficient, and more satisfying than the embossed lines with an effectiveness rate ranging from 90 percent to 100 percent, efficiency rate ranging from 6.73 seconds to 12.99 seconds, and satisfaction rate of 3.4 which means the blind are very satisfied.Keywords: blind, Philippine banknotes, tactile codification, usability
Procedia PDF Downloads 288713 Premalignant and Malignant Lesions of Uterine Polyps: Analysis at a University Hospital
Authors: Manjunath A. P., Al-Ajmi G. M., Al Shukri M., Girija S
Abstract:
Introduction: This study aimed to compare the ability of hysteroscopy and ultrasonography to diagnose uterine polyps. To correlate the ultrasonography and hystroscopic findings with various clinical factors and histopathology of uterine polyps. Methods: This is a retrospective study conducted at the Department of Obstetrics and Gynaecology at Sultan Qaboos University Hospital from 2014 to 2019. All women undergoing hysteroscopy for suspected uterine polyps were included. All relevant data were obtained from the electronic patient record and analysed using SPSS. Results: A total of 77 eligible women were analysed. The mean age of the patients was 40 years. The clinical risk factors; obesity, hypertension, and diabetes mellitus, showed no significant statistical association with the presence of uterine polyps (p-value>0.005). Although 20 women (52.6%) with uterine polyps had thickened endometrium (>11 mm), however, there is no statistical association (p-value>0.005). The sensitivity and specificity of ultrasonography in the detection of uterine polyp were 39% and 65%, respectively. Whereas for hysteroscopy, it was 89% and 20%, respectively. The prevalence of malignant and premalignant lesions were 1.85% and 7.4%, respectively. Conclusion: This study found that obesity, hypertension, and diabetes mellitus were not associated with the presence of uterine polyps. There was no association between thick endometrium and uterine polyps. The sensitivity is higher for hysteroscopy, whereas the specificity is higher for sonography in detecting uterine polyps. The prevalence of malignancy was very low in uterine polyps.Keywords: endometrial polyps, hysteroscopy, ultrasonography, premalignant, malignant
Procedia PDF Downloads 129712 Modeling Corruption Dynamics Within Bono and Ahafo Police Service in Ghana
Authors: Adam Ahmed Hosney
Abstract:
The existence of a culture of corruption within an institution, such as the police, could be a sign of failure from various angles. There is a general perception among Ghanaians that the most corrupt institution is the police service. The purpose of this study is to formulate and analyze a nonlinear mathematical model to investigate corruption as an epidemic within the Ghana police service, this study revealed the basic reproduction number for corruption extinction and corruption survival. The threshold conditions for all kinds of equilibrium points are obtained using linearization methods and Lyapunov functional methods, and they demonstrate local asymptotic stability for both corrupt endemic and corrupt free equilibrium states. The model was analyzed qualitatively, and the solution was derived. The model appears to be positively invariant and attractive. Therefore, the region exhibits positive invariance. Thus, it is adequate to think about the dynamics of the model. For the purpose of illustrating the solution, the graphic result was presented and discussed. Results show that corruption will die out within the police service if the government shows no tolerance for those involved in corrupt practices. Study findings indicate that leaders should be trustworthy, demonstrate a complete and viable commitment to addressing corruption, and make it a priority to provide mass education to all citizens as well as using religious leaders to fight corruption since most Ghanaians are religious and trust their leaders.Keywords: mathematical model, differential equation, dynamical system, simulation
Procedia PDF Downloads 26711 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 91710 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 414709 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 194708 Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate
Authors: Fatima Zohra Rahou, A.Guen Bouazza, B. Bouazza
Abstract:
SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased.Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, SOI-TRI Gate FinFET, high-K dielectric, Silvaco software
Procedia PDF Downloads 347707 Quantitative Evaluation of Endogenous Reference Genes for ddPCR under Salt Stress Using a Moderate Halophile
Authors: Qinghua Xing, Noha M. Mesbah, Haisheng Wang, Jun Li, Baisuo Zhao
Abstract:
Droplet digital PCR (ddPCR) is being increasingly adopted for gene detection and quantification because of its higher sensitivity and specificity. According to previous observations and our lab data, it is essential to use endogenous reference genes (RGs) when investigating gene expression at the mRNA level under salt stress. This study aimed to select and validate suitable RGs for gene expression under salt stress using ddPCR. Six candidate RGs were selected based on the tandem mass tag (TMT)-labeled quantitative proteomics of Alkalicoccus halolimnae at four salinities. The expression stability of these candidate genes was evaluated using statistical algorithms (geNorm, NormFinder, BestKeeper and RefFinder). There was a small fluctuation in cycle threshold (Ct) value and copy number of the pdp gene. Its expression stability was ranked in the vanguard of all algorithms, and was the most suitable RG for quantification of expression by both qPCR and ddPCR of A. halolimnae under salt stress. Single RG pdp and RG combinations were used to normalize the expression of ectA, ectB, ectC, and ectD under four salinities. The present study constitutes the first systematic analysis of endogenous RG selection for halophiles responding to salt stress. This work provides a valuable theory and an approach reference of internal control identification for ddPCR-based stress response models.Keywords: endogenous reference gene, salt stress, ddPCR, RT-qPCR, Alkalicoccus halolimnae
Procedia PDF Downloads 104706 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary
Procedia PDF Downloads 327705 Scooping Review Towards Different Use of Monitoring Technology Devices in Caring with Older Adults with Cognitive Impairment: A Model for Nursing Care Management
Authors: Hind Mohammed A. Asiri, Asia Mohammed Asiri, Hana Falah Alruwaili, Joseph Almazan
Abstract:
With the rapid growth of the older adult population, an underlying growth of public health concern is also seen. Various technologies were developed to help mitigate the arising problems of older adults with cognitive impairment and the improvement of their cognitive functions. This scooping review used the Joanna Briggs Institute (JBI) and the PRISMA extension for scoping reviews. The eligibility criteria were defined using the Population, Concept, Context (PCC) framework, as described in the JBI’s Reviewers Manual (Peters et al.,2020). The population of interest for this review is older adults 65 years old or older. Studies involving monitoring technology devices utilized in caring with older adult with cognitive impairment. This scoping review has shown information that researchers are more focused on creating alternative and novel methods or technological devices and use these as a tool for designing interventions depending on the data of the patient. This study has shown the type of technologies that have been explored in terms of assessing, detecting, monitoring, and interventions for cognitive impairment. Thus, there is a need for this technology to be applied in the practical field to further strengthen the evidence that it could enhance the lives of older adults.Keywords: technology devices, cognitive impairment, older adult, nursing care, caring
Procedia PDF Downloads 123704 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)
Authors: Juzhong Tan, William Kerr
Abstract:
Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.Keywords: artificial neutron network, cocoa bean, electronic nose, roasting
Procedia PDF Downloads 234703 Using English Discourse Markers by Saudi EFL Learners: A Descriptive Approach
Authors: Sadeq Al Yaari, Fayza Al Hammadi, Nassr Almaflehi, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Background: The language of EFL learners is of special interests to linguists. Little research has been tackled on issues concerning English Discourse Markers (EDMs) among Saudi EFL learners. Aims: Employing a corpus-based descriptive analysis, the current study attempts at detecting EDMs in the talk of Saudi EFL learners, their frequency, use, usage, etc., in comparison to other EFL learners as well as native speakers. Methods: Two hundreds Saudi EFL learners were randomly selected from 20 public and private schools (ten students from each school) across the Kingdom of Saudi Arabia (KSA). Subjects were individually recorded while they were studying English in class. Recordings were then linguistically and statistically analyzed by the researchers. Conclusion: Results illustrate that EDMs “and”, “but” and “also” are the most frequent EDMs in the talk of Saudi EFL learners. These devices are randomly used by Saudi EFL learners who mix their use (appropriateness) with usage (correctedness) due to the influence of their L1 (Arabic). In compare to other EFL learners (native and non-native), Saudi EFL learners use less EDMs. These results confirmed the claims that EFL learners use EDMs less than native speakers. This paper, although preliminary in nature, can help arrive a better understanding of using EDMs by Saudi EFL learners. Further, it can also assist in getting appropriate insights into the way how these EDMs are used in Arab Gulf countries. The researchers decided to conduct an in-depth study into the use of EDMs in the oral work of Saudi EFL learners.Keywords: English discourse markers, Saudi EFL learners, use, usage, frequency, native speakers
Procedia PDF Downloads 46