Search results for: support vector machines (SVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8246

Search results for: support vector machines (SVM)

7436 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement

Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao

Abstract:

Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.

Keywords: feature analysis, machine vision, PCA, surface roughness, SVM

Procedia PDF Downloads 212
7435 Fuzzy Decision Support System for Human-Realistic Overtaking in Railway Traffic Simulations

Authors: Tomáš Vyčítal

Abstract:

In a simulation model of a railway system it is important, besides other crucial algorithms, to have correct behaviour of train overtaking in stochastic conditions. This problem is being addressed in many simulation tools focused on railway traffic, however these are not very human-realistic. The goal of this paper is to create a more human-realistic overtaking decision support system for the use in railway traffic simulations. A fuzzy system has been chosen for this task as fuzzy systems are well-suited for human-like decision making. The fuzzy system designed takes into account timetables, train positions, delays and buffer times as inputs and provides an instruction to overtake or not overtake.

Keywords: decision-making support, fuzzy systems, simulation, railway, transport

Procedia PDF Downloads 140
7434 Investigation of Boll Properties on Cotton Picker Machine Performance

Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari

Abstract:

Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.

Keywords: cotton, bract, harvester, carpel

Procedia PDF Downloads 135
7433 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 362
7432 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System

Authors: Latif Yanar, Muammer Kaçan

Abstract:

Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.

Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations

Procedia PDF Downloads 592
7431 The Role of Formal and Informal Social Support in Predicting the Involvement of Mothers and Fathers of Young Children with Autism Spectrum Disorder

Authors: Adi Sharabi, Dafna Marom-Golan

Abstract:

Parents’ involvement in the care of their children with Autism Spectrum Disorder (ASD) and its beneficial effect on the children’s developmental and educational outcomes is well documented. At the same time, parents of children with ASD tend to experience greater psychological distress than parents of children with other developmental disabilities or with typical development. Positive social support is an important resource used by parents to reduce their psychological distress. The goal of the current research was to examine the contribution of formal and informal social support in explaining mothers’ and fathers’ involvement with their young children with ASD. The sample consisted of 107 parents who live in Israel (61 mothers and 46 fathers) of children aged between 2 and 7, all diagnosed with ASD and attending special kindergartens or special day care for children with ASD. Parental involvement and social support perception were assessed. Initial analysis focused on the relations between involvement, support, and demographic variables. In addition, analysis of variance (ANOVA) was conducted to test differences between mothers and fathers. Two hierarchical multiple regression analyses were performed to examine the predicted factors in the involvement model while controlling for group (mothers/fathers). Results indicate that mothers reported significantly higher levels of parenting involvement than fathers. Mothers reported higher levels of general involvement and all sub-types of involvement. For example, mothers reported that they were more interested in and have higher levels of attendance in their child’s educational program. They were also more collaborative in their child’s educational therapeutic program, and socialized with other parents of children from their child’s kindergarten than fathers. Mothers’ involvement was found to be related to their informal support (non-formal relatives). Findings also reveal significant differences between mothers and fathers on the formal support subscale measure of specializes services. Fathers, more than mothers, reported more specializes services support such as social workers or professional therapists. Separate hierarchical multiple regression analyses revealed a unique gender difference in the factors that explained parental involvement. Specifically, informal support only had a unique positive contribution in explaining mothers’, but not fathers’ involvement. This study highlights the central role of mothers in maintaining constant contact with the educational system and the professionals who help care for their child with ASD. At the same time, this research emphasizes the crucial role of both mothers and fathers in their child's development and well-being at every development stage, particularly in early development. Further, different kinds of social support seem to relate to the different kinds of parental involvement. It is in the best interest of educators and family therapists who work with families with children with ASD to support the cohesiveness of the family and the collaboration of the parents by understanding and respecting the way each member addresses the responsibilities of parenting a child with ASD, and her or his need for different types of social support.

Keywords: parental differences, parental involvement, social support, specialized support services

Procedia PDF Downloads 247
7430 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 509
7429 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method

Authors: Rosangliana Chawngthu, Ramkumar K. Thapa

Abstract:

A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.

Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction

Procedia PDF Downloads 226
7428 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling

Authors: Ali Ashtiani, Cesar Carrasco

Abstract:

Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.

Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement

Procedia PDF Downloads 149
7427 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 81
7426 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131
7425 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques

Authors: Raymond Feng, Shadi Ghiasi

Abstract:

An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.

Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals

Procedia PDF Downloads 62
7424 A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants

Authors: Arfan Ali, Idrees Ahmad Nasir

Abstract:

Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage.

Keywords: potato, Solanum tuberosum, transformation, PfkB, anti-sweetening

Procedia PDF Downloads 472
7423 Pyrethroid and Organophosphate Susceptibility Status of Aedesaegypti (Linnaeus), Aedes albopictus (Skuse) and Culex quinquefasciatus (Say) in Penang, Malaysia

Authors: Hadura Abu Hasan, Zairi Jaal, P. J. McCall

Abstract:

Dengue is a serious problem in Malaysia, particularly in high-density urban communities with lower socio-economic levels. This study evaluated the susceptibility of local populations of Aedesaegypti (Linnaeus), Aedesalbopictus (Skuse) and Culexquinquefasciatus (Say) from the traditional community of BaganDalam, Penang, Malaysia to lambdacyhalothrin and pirimiphos-methyl using standard World Health Organization (WHO) adult bioassay test. Unfed female mosquitoes aged 3-5 days were exposed to WHO recommended dosages of insecticides over fixed time periods with results presented as knock-down time (KT50) for each strain.The insecticide susceptible VCRU laboratory strain was usedas control. All three specieswere highly resistant to lambda-cyhalothrin with less than 10% mortality at 24 hours after treatment. In contrast, Ae.aegypti and Ae. albopictus were susceptible to pirimiphos-methyl, showing 100% mortality recorded 24 hoursafter treatment. Cx. quinquefasciatuswasclassed as ‘suspected resistant’ to pirimiphos-methyl as mortality recorded 24 hours after treatment was 94-96%. The results indicate that organophosphates such as pirimiphos-methyl might be used as alternative to pyrethroid for dengue vector control in this dengue-prone area.

Keywords: vector control, aedes aegypti, aedes albopictus, dengue, culex quinquefasciatus, residuals insecticides, pyrethroid, organophosphate, resistant, mosquito

Procedia PDF Downloads 259
7422 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 161
7421 Crime Victim Support Services in Bangladesh: An Analysis

Authors: Mohammad Shahjahan, Md. Monoarul Haque

Abstract:

In the research work information and data were collected from both types of sources, direct and indirect. Numerological, qualitative and participatory analysis methods have been followed. There were two principal sources of collecting information and data. Firstly, the data provided by the service recipients (300 nos. of women and children victims) in the Victim Support Centre and service providing policemen, executives and staffs (60 nos.). Secondly, data collected from Specialists, Criminologists and Sociologists involved in victim support services through Consultative Interview, KII, Case Study and FGD etc. The initial data collection has been completed with the help of questionnaires as per strategic variations and with the help of guidelines. It is to be noted that the main objective of this research was to determine whether services provided to the victims for their facilities, treatment/medication and rehabilitation by different government/non-government organizations was veritable at all. At the same time socio-economic background and demographic characteristics of the victims have also been revealed through this research. The results of the study show that although the number of victims has increased gradually due to socio-economic, political and cultural realities in Bangladesh, the number of victim support centers has not increased as expected. Awareness among the victims about the effectiveness of the 8 centers working in this regard is also not up to the mark. Two thirds of the victims coming to get service were not cognizant regarding the victim support services at all before getting the service. Most of those who have finally been able to come under the services of the Victim Support Center through various means, have received sheltering (15.5%), medical services (13.32%), counseling services (13.10%) and legal aid (12.66%). The opportunity to stay in security custody and psycho-physical services were also notable. Usually, women and children from relatively poor and marginalized families of the society come to victim support center for getting services. Among the women, young unmarried women are the biggest victims of crime. Again, women and children employed as domestic workers are more affected. A number of serious negative impacts fall on the lives of the victims. Being deprived of employment opportunities (26.62%), suffering from psycho-somatic disorder (20.27%), carrying sexually transmitted diseases (13.92%) are among them. It seems apparent to urgently enact distinct legislation, increase the number of Victim Support Centers, expand the area and purview of services and take initiative to increase public awareness and to create mass movement.

Keywords: crime, victim, support, Bangladesh

Procedia PDF Downloads 89
7420 Analysis of Career Support Programs for Olympic Athletes in Japan with Fifteen Conceptual Categories

Authors: Miyako Oulevey, Kaori Tsutsui, David Lavallee, Naohiko Kohtake

Abstract:

The Japan Sports Agency has made efforts to unify several career support programs for Olympic athletes prior to the 2020 Tokyo Olympics. One of the programs, the Japan Olympic Committee Career Academy (JCA) was established in 2008 for Olympic athletes at their retirement. Research focusing on the service content of sport career support programs can help athletes experience a more positive transition. This study was designed to investigate the service content of the JCA program in relation to athletes’ career transition needs, including any differences of the reasons for retirement between Summer/Winter and Male/Female Olympic athletes, and to suggest the directions of how to unify the career support programs in Japan after hosting the Olympic Games using sport career transition models. Semi-structured interviews were conducted and analyzed the JCA director who started and managed the program since its inception, and a total of 15 conceptual categories were generated by the analysis. Four conceptual categories were in the result of “JCA situation”, 4 conceptual categories were in the result of “Athletes using JCA”, and 7 conceptual categories were in the result of “JCA current difficulties”. Through the analysis it was revealed that: the JCA had occupational supports for both current and retired Olympic athletes; other supports such as psychological support were unclear due to the lack of psychological professionals in JCA and the difficulties collaborating with other sports organizations; and there are differences in tendencies of visiting JCA, financial situations, and career choices depending on Summer/Winter and Male/Female athletes.

Keywords: career support programs, causes of career termination, Olympic athlete, Olympic committee

Procedia PDF Downloads 145
7419 Entrepreneurial Support Ecosystem: Role of Research Institutes

Authors: Ayna Yusubova, Bart Clarysse

Abstract:

This paper explores role of research institutes in creation of support ecosystem for new technology-based ventures. Previous literature introduced research institutes as part of business and knowledge ecosystem, very few studies are available that consider a research institute as an ecosystem that support high-tech startups at every stage of development. Based on a resource-based view and a stage-based model of high-tech startups growth, this study aims to analyze how a research institute builds a startup support ecosystem by attracting different stakeholders in order to help startups to overcome resource. This paper is based on an in-depth case study of public research institute that focus on development of entrepreneurial ecosystem in a developed region. Analysis shows that the idea generation stage of high-tech startups that related to the invention and development of product or technology for commercialization is associated with a lack of critical knowledge resources. Second, at growth phase that related to market entrance, high-tech startups face challenges associated with the development of their business network. Accordingly, the study shows the support ecosystem that research institute creates helps high-tech startups overcome resource gaps in order to achieve a successful transition from one phase of growth to the next.

Keywords: new technology-based firms, ecosystems, resources, business incubators, research instutes

Procedia PDF Downloads 260
7418 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm

Procedia PDF Downloads 165
7417 Postpartum Depression and Its Association with Food Insecurity and Social Support among Women in Post-Conflict Northern Uganda

Authors: Kimton Opiyo, Elliot M. Berry, Patil Karamchand, Barnabas K. Natamba

Abstract:

Background: Postpartum depression (PPD) is a major psychiatric disorder that affects women soon after birth and in some cases, is a continuation of antenatal depression. Food insecurity (FI) and social support (SS) are known to be associated with major depressive disorder, and vice versa. This study was conducted to examine the interrelationships among FI, SS, and PPD among postpartum women in Gulu, a post-conflict region in Uganda. Methods: Cross-sectional data from postpartum women on depression symptoms, FI and SS were, respectively, obtained using the Center for Epidemiologic Studies-Depression (CES-D) scale, Individually Focused FI Access scale (IFIAS) and Duke-UNC functional social support scale. Standard regression methods were used to assess associations among FI, SS, and PPD. Results: A total of 239 women were studied, and 40% were found to have any PPD, i.e., with depressive symptom scores of ≥ 17. The mean ± standard deviation (SD) for FI score and SS scores were 6.47 ± 5.02 and 19.11 ± 4.23 respectively. In adjusted analyses, PPD symptoms were found to be positively associated with FI (unstandardized beta and standardized beta of 0.703 and 0.432 respectively, standard errors =0.093 and p-value < 0.0001) and negatively associated with SS (unstandardized beta and standardized beta of -0.263 and -0.135 respectively, standard errors = 0.111 and p-value = 0.019). Conclusions: Many women in this post-conflict region reported experiencing PPD. In addition, this data suggest that food security and psychosocial support interventions may help mitigate women’s experience of PPD or its severity.

Keywords: postpartum depression, food insecurity, social support, post-conflict region

Procedia PDF Downloads 168
7416 Ethnic Identity as an Asset: Linking Ethnic Identity, Perceived Social Support, and Mental Health among Indigenous Adults in Taiwan

Authors: A.H.Y. Lai, C. Teyra

Abstract:

In Taiwan, there are 16 official indigenous groups, accounting for 2.3% of the total population. Like other indigenous populations worldwide, indigenous peoples in Taiwan have poorer mental health because of their history of oppression and colonisation. Amid the negative narratives, the ethnic identity of cultural minorities is their unique psychological and cultural asset. Moreover, positive socialisation is found to be related to strong ethnic identity. Based on Phinney’s theory on ethnic identity development and social support theory, this study adopted a strength-based approach conceptualising ethnic identity as the central organising principle that linked perceived social support and mental health among indigenous adults in Taiwan. Aims. Overall aim is to examine the effect of ethnic identity and social support on mental health. Specific aims were to examine : (1) the association between ethnic identity and mental health; (2) the association between perceived social support and mental health ; (3) the indirect effect of ethnic identity linking perceived social support and mental health. Methods. Participants were indigenous adults in Taiwan (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Respondent-driven sampling was used. Standardised measurements were: Ethnic Identity Scale(6-item); Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender and economic satisfaction. A four-stage structural equation modelling (SEM) with robust maximin likelihood estimation was employed using Mplus8.0. Step 1: A measurement model was built and tested using confirmatory factor analysis (CFA). Step 2: Factor covariates were re-specified as direct effects in the SEM. Covariates were added. The direct effects of (1) ethnic identity and social support on depression and anxiety and (2) social support on ethnic identity were tested. The indirect effect of ethnic identity was examined with the bootstrapping technique. Results. The CFA model showed satisfactory fit statistics: x^2(df)=869.69(608), p<.05; Comparative ft index (CFI)/ Tucker-Lewis fit index (TLI)=0.95/0.94; root mean square error of approximation (RMSEA)=0.05; Standardized Root Mean Squared Residual (SRMR)=0.05. Ethnic identity is represented by two latent factors: ethnic identity-commitment and ethnic identity-exploration. Depression, anxiety and social support are single-factor latent variables. For the SEM, model fit statistics were: x^2(df)=779.26(527), p<.05; CFI/TLI=0.94/0.93; RMSEA=0.05; SRMR=0.05. Ethnic identity-commitment (b=-0.30) and social support (b=-0.33) had direct negative effects on depression, but ethnic identity-exploration did not. Ethnic identity-commitment (b=-0.43) and social support (b=-0.31) had direct negative effects on anxiety, while identity-exploration (b=0.24) demonstrated a positive effect. Social support had direct positive effects on ethnic identity-exploration (b=0.26) and ethnic identity-commitment (b=0.31). Mediation analysis demonstrated the indirect effect of ethnic identity-commitment linking social support and depression (b=0.22). Implications: Results underscore the role of social support in preventing depression via ethnic identity commitment among indigenous adults in Taiwan. Adopting the strength-based approach, mental health practitioners can mobilise indigenous peoples’ commitment to their group to promote their well-being.

Keywords: ethnic identity, indigenous population, mental health, perceived social support

Procedia PDF Downloads 103
7415 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
7414 An Application of Vector Error Correction Model to Assess Financial Innovation Impact on Economic Growth of Bangladesh

Authors: Md. Qamruzzaman, Wei Jianguo

Abstract:

Over the decade, it is observed that financial development, through financial innovation, not only accelerated development of efficient and effective financial system but also act as a catalyst in the economic development process. In this study, we try to explore insight about how financial innovation causes economic growth in Bangladesh by using Vector Error Correction Model (VECM) for the period of 1990-2014. Test of Cointegration confirms the existence of a long-run association between financial innovation and economic growth. For investigating directional causality, we apply Granger causality test and estimation explore that long-run growth will be affected by capital flow from non-bank financial institutions and inflation in the economy but changes of growth rate do not have any impact on Capital flow in the economy and level of inflation in long-run. Whereas, growth and Market capitalization, as well as market capitalization and capital flow, confirm feedback hypothesis. Variance decomposition suggests that any innovation in the financial sector can cause GDP variation fluctuation in both long run and short run. Financial innovation promotes efficiency and cost in financial transactions in the financial system, can boost economic development process. The study proposed two policy recommendations for further development. First, innovation friendly financial policy should formulate to encourage adaption and diffusion of financial innovation in the financial system. Second, operation of financial market and capital market should be regulated with implementation of rules and regulation to create conducive environment.

Keywords: financial innovation, economic growth, GDP, financial institution, VECM

Procedia PDF Downloads 272
7413 Skills for Family Support Workforce: A Systematic Review

Authors: Anita Burgund Isakov, Cristina Nunes, Nevenka Zegarac, Ana Antunes

Abstract:

Contemporary societies are facing a noticeable shift in family realities, urging to need for the development of new policies, service, and practice orientation that has application across different sectors who serves families with children across the world. A challenge for the field of family support is diversity in conceptual assumptions and epistemological frameworks. Since many disciplines and professionals are working in the family support field, there is a need to map and gain a deeper insight into the skills for the workforce in this field. Under the umbrella of the COST action 'The Pan-European Family Support Research Network: A bottom-up, evidence-based and multidisciplinary approach', a review of the current state of knowledge published from the European studies on family support workforce skills standards is performed. Contributing to the aim of mapping and catalogization of skills standards, key stages of literature review were identified in order to extract and systematize the data. We have considered inclusion and exclusion criteria for this literature review. Inclusion criteria were: a) families living with their children and families using family support services; different methodological approaches were included: qualitative, quantitative, mix method, literature review and theoretical reflections various topic appeared in journals like working with families that are facing difficulties or culturally sensitive practice and relationship-based approaches; b) the dates ranged from 1995 to February 2020. Articles published prior to 1995 were excluded due to modernization of family support services across world; c) the sources and languages included peer-reviewed articles published in scientific journals in English. Six databases were searched and once we have extracted all the relevant papers (n=29), we searched the list of reference in each and we found 11 additional papers. In total 40 papers have been extracted from six data basis. Findings could be summarized in: 1) only five countries emerged with production in the specific topic, that is, workforce skills to family support (UK, USA, Canada, Australia, and Spain), 2) studies revealed that diverse skills support family topics were investigated, namely the professional support skills to help families of neglected/abused children or in care; the professional support skills to help families with children who suffer from behavioral problems and families with children with disabilities; and the professional support skills to help minority ethnic parents, 3) social workers were the main targeted professionals' studies albeit other child protection workers were studied too, 4) the workforce skills to family support were grouped in three topics: the qualities of the professionals (attitudes and attributes); technical skills, and specific knowledge. The framework of analyses, literature strategy and findings with study limitations will be further discussed. As an implication, this study contributes and advocates for the structuring of a common base for cross-sectoral and interdisciplinary qualification standards for the family support workforce.

Keywords: family support, skill standards, systemic review, workforce

Procedia PDF Downloads 112
7412 Forecasting Regional Data Using Spatial Vars

Authors: Taisiia Gorshkova

Abstract:

Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regions

Keywords: forecasting, regional data, spatial econometrics, vector autoregression

Procedia PDF Downloads 141
7411 Comparison of Catalyst Support for High Pressure Reductive Amination

Authors: Tz-Bang Du, Cheng-Han Hsieh, Li-Ping Ju, Hung-Jie Liou

Abstract:

Polyether amines synthesize by secondary hydroxyl polyether diol play an important role in epoxy hardener. The low molecular weight product is used in low viscosity and high transparent polyamine product for the logo, ground cover, especially for wind turbine blade, while the high molecular weight products are used in advanced agricultures such as a high-speed railway. High-pressure reductive amination process is required for producing these amines. In the condition of higher than 150 atm pressure and 200 degrees Celsius temperature, supercritical ammonia is used as a reactant and also a solvent. It would be a great challenge to select a catalyst support for such high-temperature alkaline circumstance. In this study, we have established a six-autoclave-type (SAT) high-pressure reactor for amination catalyst screening, which six experiment conditions with different temperature and pressure could be examined at the same time. We synthesized copper-nickel catalyst on different shaped alumina catalyst support and evaluated the catalyst activity for high-pressure reductive amination of polypropylene glycol (PPG) by SAT reactor. Ball type gamma alumina, ball type activated alumina and pellet type gamma alumina catalyst supports are evaluated in this study. Gamma alumina supports have shown better activity on PPG reductive amination than activated alumina support. In addition, the catalysts are evaluated in fixed bed reactor. The diamine product was successfully synthesized via this catalyst and the strength of the catalysts is measured. The crush strength of blank supports is about 13.5 lb for both gamma alumina and activated alumina. The strength increases to 20.3 lb after synthesized to be copper-nickel catalyst. After test in the fixed bed high-pressure reductive amination process for 100 hours, the crush strength of the used catalyst is 3.7 lb for activated alumina support, 12.0 lb for gamma alumina support. The gamma alumina is better than activated alumina to use as catalyst support in high-pressure reductive amination process.

Keywords: high pressure reductive amination, copper nickel catalyst, polyether amine, alumina

Procedia PDF Downloads 229
7410 Determinants of Economic Growth in Pakistan: A Structural Vector Auto Regression Approach

Authors: Muhammad Ajmair

Abstract:

This empirical study followed structural vector auto regression (SVAR) approach proposed by the so-called AB-model of Amisano and Giannini (1997) to check the impact of relevant macroeconomic determinants on economic growth in Pakistan. Before that auto regressive distributive lag (ARDL) bound testing technique and time varying parametric approach along with general to specific approach was employed to find out relevant significant determinants of economic growth. To our best knowledge, no author made such a study that employed auto regressive distributive lag (ARDL) bound testing and time varying parametric approach with general to specific approach in empirical literature, but current study will bridge this gap. Annual data was taken from World Development Indicators (2014) during period 1976-2014. The widely-used Schwarz information criterion and Akaike information criterion were considered for the lag length in each estimated equation. Main findings of the study are that remittances received, gross national expenditures and inflation are found to be the best relevant positive and significant determinants of economic growth. Based on these empirical findings, we conclude that government should focus on overall economic growth augmenting factors while formulating any policy relevant to the concerned sector.

Keywords: economic growth, gross national expenditures, inflation, remittances

Procedia PDF Downloads 199
7409 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism

Authors: Rui Liu, Pengyu Cui, Nan Jiang

Abstract:

At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.

Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion

Procedia PDF Downloads 199
7408 Cable De-Commissioning of Legacy Accelerators at CERN

Authors: Adya Uluwita, Fernando Pedrosa, Georgi Georgiev, Christian Bernard, Raoul Masterson

Abstract:

CERN is an international organisation funded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023.

Keywords: CERN, de-cabling, injectors, quality assurance procedure

Procedia PDF Downloads 93
7407 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception

Procedia PDF Downloads 422