Search results for: predicting model
16568 A Two Stage Stochastic Mathematical Model for the Tramp Ship Routing with Time Windows Problem
Authors: Amin Jamili
Abstract:
Nowadays, the majority of international trade in goods is carried by sea, and especially by ships deployed in the industrial and tramp segments. This paper addresses routing the tramp ships and determining the schedules including the arrival times to the ports, berthing times at the ports, and the departure times in an operational planning level. In the operational planning level, the weather can be almost exactly forecasted, however in some routes some uncertainties may remain. In this paper, the voyaging times between some of the ports are considered to be uncertain. To that end, a two-stage stochastic mathematical model is proposed. Moreover, a case study is tested with the presented model. The computational results show that this mathematical model is promising and can represent acceptable solutions.Keywords: routing, scheduling, tram ships, two stage stochastic model, uncertainty
Procedia PDF Downloads 43816567 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 32416566 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach
Abstract:
In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.Keywords: multi-physical domain, conduction model, port based modeling, dynamic interaction, physical modeling
Procedia PDF Downloads 27716565 Enhancement of Indexing Model for Heterogeneous Multimedia Documents: User Profile Based Approach
Authors: Aicha Aggoune, Abdelkrim Bouramoul, Mohamed Khiereddine Kholladi
Abstract:
Recent research shows that user profile as important element can improve heterogeneous information retrieval with its content. In this context, we present our indexing model for heterogeneous multimedia documents. This model is based on the combination of user profile to the indexing process. The general idea of our proposal is to operate the common concepts between the representation of a document and the definition of a user through his profile. These two elements will be added as additional indexing entities to enrich the heterogeneous corpus documents indexes. We have developed IRONTO domain ontology allowing annotation of documents. We will present also the developed tool validating the proposed model.Keywords: indexing model, user profile, multimedia document, heterogeneous of sources, ontology
Procedia PDF Downloads 34916564 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy
Procedia PDF Downloads 22816563 A Model for Solid Transportation Problem with Three Hierarchical Objectives under Uncertain Environment
Authors: Wajahat Ali, Shakeel Javaid
Abstract:
In this study, we have developed a mathematical programming model for a solid transportation problem with three objective functions arranged in hierarchical order. The mathematical programming models with more than one objective function to be solved in hierarchical order is termed as a multi-level programming model. Our study explores a Multi-Level Solid Transportation Problem with Uncertain Parameters (MLSTPWU). The proposed MLSTPWU model consists of three objective functions, viz. minimization of transportation cost, minimization of total transportation time, and minimization of deterioration during transportation. These three objective functions are supposed to be solved by decision-makers at three consecutive levels. Three constraint functions are added to the model, restricting the total availability, total demand, and capacity of modes of transportation. All the parameters involved in the model are assumed to be uncertain in nature. A solution method based on fuzzy logic is also discussed to obtain the compromise solution for the proposed model. Further, a simulated numerical example is discussed to establish the efficiency and applicability of the proposed model.Keywords: solid transportation problem, multi-level programming, uncertain variable, uncertain environment
Procedia PDF Downloads 8416562 Experimental and Numerical Analyses of Tehran Research Reactor
Authors: A. Lashkari, H. Khalafi, H. Khazeminejad, S. Khakshourniya
Abstract:
In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes.Keywords: thermal-hydraulic, research reactor, reactivity insertion, numerical modeling
Procedia PDF Downloads 40116561 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows
Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle
Abstract:
This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.Keywords: airborne, airflow, focused sound field, ultrasonic phased array
Procedia PDF Downloads 34516560 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India
Authors: Ajai Singh
Abstract:
Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation
Procedia PDF Downloads 37116559 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.Keywords: active suspension system, air suspension, bus model, sliding mode control
Procedia PDF Downloads 38816558 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 34416557 How to Applicate Knowledge Management in Security Environment within the Scope of Optimum Balance Model
Authors: Hakan Erol, Altan Elibol, Ömer Eryılmaz, Mehmet Şimşek
Abstract:
Organizations aim to manage information in a most possible effective way for sustainment and development. In doing so, they apply various procedures and methods. The very same situation is valid for each service of Armed Forces. During long-lasting endeavors such as shaping and maintaining security environment, supporting and securing peace, knowledge management is a crucial asset. Optimum Balance Model aims to promote the system from a decisive point to a higher decisive point. In this context, this paper analyses the application of optimum balance model to knowledge management in Armed Forces and tries to find answer to the question how Optimum Balance Model is integrated in knowledge management.Keywords: optimum balance model, knowledge management, security environment, supporting peace
Procedia PDF Downloads 39816556 A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model
Authors: Yuan-Jye Tseng, Yi-Shiuan Chen
Abstract:
The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives.Keywords: closed-loop design, closed-loop supply chain, design evaluation, supply chain management, sustainable design model
Procedia PDF Downloads 42616555 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness
Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong
Abstract:
Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.Keywords: equivalent stiffness, finite element model, free vibration response, Stockbridge damper
Procedia PDF Downloads 28616554 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 15416553 Port Governance Model by International Freight Forwarders’ Point of View: A Study at Port of Santos - Brazil
Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto
Abstract:
Due to the importance of ports to trade and economic development of the regions in which they are inserted, in recent decades the number of studies devoted to this subject has increased. Part of these studies consider the ports as business agglomerations and focuses on port governance. This is an important approach since the port performance is the result of activities performed by actors belonging to the port-logistics chain, which need to be properly coordinated. This coordination takes place through a port governance model. Given this context, this study aims to analyze the governance model of the port of Santos from the perspective of port customers. To do this, a closed-ended questionnaire based on a conceptual model that considers the key dimensions associated with port governance was applied to the international freight forwarders that operate in the port. The results show the applicability of the considered model and highlight improvement opportunities to be implemented at the port of Santos.Keywords: port governance, model, Port of Santos, customers’ perception
Procedia PDF Downloads 45316552 The Effectiveness of Goldstein's Social Skillstreaming Model on Social Skills of Special Education Pre-Service Teachers
Authors: Ragea Alqahtani
Abstract:
The purpose of the study was to measure the effectiveness of the Goldstein’s social skill streaming model based on the special and general pre-service teachers’ knowledge about controlling their emotions in conflict situations. A review of previous pieces of literature guided the design and measurement of the effectiveness of the approach to the control of emotions. The teachers were assessed using the coping strategy, adult anger, and Goldstein’s skill streaming inventories. Lastly, the paper provides various recommendations on the sensitization of the Goldstein’s Social Skill streaming model to both the special and pre-service teachers to promote their knowledge about controlling emotions in conflicts.Keywords: emotional control, Goldstein social skill streaming model, modeling technique, self- as-a-model, self-efficacy, self-regulation
Procedia PDF Downloads 2816551 Predicting Halal Food Consumption for Muslim Turkish Immigrants Living in Germany
Authors: Elif Eroglu Hall, Nurdan Sevim
Abstract:
The purposes of this research are to clarify the determinants of Muslim immigrants in consuming halal food by using components of Theory of Planned Behavior. The study was done by surveying Turkish immigrants living in Cologne Germany. The results of this study show that the intentions of Muslim Turkish immigrants in consuming halal food is influenced by attitude, subjective norms and perceived behavioral control.Keywords: halal food, immigrants, religion, theory of planned behavior
Procedia PDF Downloads 29616550 Operating Model of Obstructive Sleep Apnea Patients in North Karelia Central Hospital
Authors: L. Korpinen, T. Kava, I. Salmi
Abstract:
This study aimed to describe the operating model of obstructive sleep apnea. Due to the large number of patients, the role of nurses in the diagnosis and treatment of sleep apnea was important. Pulmonary physicians met only a minority of the patients. The sleep apnea study in 2018 included about 800 patients, of which about 28% were normal and 180 patients were classified as severe (apnea-hypopnea index [AHI] over 30). The operating model has proven to be workable and appropriate. The patients understand well that they may not be referred to a pulmonary doctor. However, specialized medical follow-up on professional drivers continues every year.Keywords: sleep, apnea patient, operating model, hospital
Procedia PDF Downloads 13216549 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 26716548 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 9016547 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface
Authors: Aleš Kratochvíl, Svatomír Slavík
Abstract:
The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.Keywords: active damping, finite element method, flutter, tailplane model
Procedia PDF Downloads 29216546 Generic Model for Timetabling Problems by Integer Linear Programmimg Approach
Authors: Nur Aidya Hanum Aizam, Vikneswary Uvaraja
Abstract:
The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming model to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describe about creating a general model which solve different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling
Procedia PDF Downloads 43816545 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 27816544 Effects of Research-Based Blended Learning Model Using Adaptive Scaffolding to Enhance Graduate Students' Research Competency and Analytical Thinking Skills
Authors: Panita Wannapiroon, Prachyanun Nilsook
Abstract:
This paper is a report on the findings of a Research and Development (R&D) aiming to develop the model of Research-Based Blended Learning Model Using Adaptive Scaffolding (RBBL-AS) to enhance graduate students’ research competency and analytical thinking skills, to study the result of using such model. The sample consisted of 10 experts in the fields during the model developing stage, while there were 23 graduate students of KMUTNB for the RBBL-AS model try out stage. The research procedures included 4 phases: 1) literature review, 2) model development, 3) model experiment, and 4) model revision and confirmation. The research results were divided into 3 parts according to the procedures as described in the following session. First, the data gathering from the literature review were reported as a draft model; followed by the research finding from the experts’ interviews indicated that the model should be included 8 components to enhance graduate students’ research competency and analytical thinking skills. The 8 components were 1) cloud learning environment, 2) Ubiquitous Cloud Learning Management System (UCLMS), 3) learning courseware, 4) learning resources, 5) adaptive Scaffolding, 6) communication and collaboration tolls, 7) learning assessment, and 8) research-based blended learning activity. Second, the research finding from the experimental stage found that there were statistically significant difference of the research competency and analytical thinking skills posttest scores over the pretest scores at the .05 level. The Graduate students agreed that learning with the RBBL-AS model was at a high level of satisfaction. Third, according to the finding from the experimental stage and the comments from the experts, the developed model was revised and proposed in the report for further implication and references.Keywords: research based learning, blended learning, adaptive scaffolding, research competency, analytical thinking skills
Procedia PDF Downloads 41816543 Investigation on Machine Tools Energy Consumptions
Authors: Shiva Abdoli, Daniel T.Semere
Abstract:
Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)
Procedia PDF Downloads 50016542 Development of EREC IF Model to Increase Critical Thinking and Creativity Skills of Undergraduate Nursing Students
Authors: Kamolrat Turner, Boontuan Wattanakul
Abstract:
Critical thinking and creativity are prerequisite skills for working professionals in the 21st century. A survey conducted in 2014 at the Boromarajonani College of Nursing, Chon Buri, Thailand, revealed that these skills within students across all academic years was at a low to moderate level. An action research study was conducted to develop the EREC IF Model, a framework which includes the concepts of experience, reflection, engagement, culture and language, ICT, and flexibility and fun, to guide pedagogic activities for 75 sophomores of the undergraduate nursing science program at the college. The model was applied to all professional nursing courses. Prior to implementation, workshops were held to prepare lecturers and students. Both lecturers and students initially expressed their discomfort and pointed to the difficulties with the model. However, later they felt more comfortable, and by the end of the project they expressed their understanding and appreciation of the model. A survey conducted four and eight months after implementation found that the critical thinking and creativity skills of the sophomores were significantly higher than those recorded in the pretest. It could be concluded that the EREC IF model is efficient for fostering critical thinking and creativity skills in the undergraduate nursing science program. This model should be used for other levels of students.Keywords: critical thinking, creativity, undergraduate nursing students, EREC IF model
Procedia PDF Downloads 32316541 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 49216540 Software Assessment Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: optimization technique, quality assurance, software certification model, software assessment
Procedia PDF Downloads 48816539 Simulation Study on Vehicle Drag Reduction by Surface Dimples
Authors: S. F. Wong, S. S. Dol
Abstract:
Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence
Procedia PDF Downloads 316