Search results for: operating system
18255 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland
Authors: Ahmed Aisa, Tariq Iqbal
Abstract:
This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.Keywords: water heating, thermal storage, capital cost solar, consumption
Procedia PDF Downloads 43118254 Reliability Analysis: A Case Study in Designing Power Distribution System of Tehran Oil Refinery
Authors: A. B. Arani, R. Shojaee
Abstract:
Electrical power distribution system is one of the vital infrastructures of an oil refinery, which requires wide area of study and planning before construction. In this paper, power distribution reliability of Tehran Refinery’s KHDS/GHDS unit has been taken into consideration to investigate the importance of these kinds of studies and evaluate the designed system. In this regard, the authors chose and evaluated different configurations of electrical power distribution along with the existing configuration with the aim of finding the most suited configuration which satisfies the conditions of minimum cost of electrical system construction, minimum cost imposed by loss of load, and maximum power system reliability.Keywords: power distribution system, oil refinery, reliability, investment cost, interruption cost
Procedia PDF Downloads 87618253 Investigation for Pixel-Based Accelerated Aging of Large Area Picosecond Photo-Detectors
Authors: I. Tzoka, V. A. Chirayath, A. Brandt, J. Asaadi, Melvin J. Aviles, Stephen Clarke, Stefan Cwik, Michael R. Foley, Cole J. Hamel, Alexey Lyashenko, Michael J. Minot, Mark A. Popecki, Michael E. Stochaj, S. Shin
Abstract:
Micro-channel plate photo-multiplier tubes (MCP-PMTs) have become ubiquitous and are widely considered potential candidates for next generation High Energy Physics experiments due to their picosecond timing resolution, ability to operate in strong magnetic fields, and low noise rates. A key factor that determines the applicability of MCP-PMTs in their lifetime, especially when they are used in high event rate experiments. We have developed a novel method for the investigation of the aging behavior of an MCP-PMT on an accelerated basis. The method involves exposing a localized region of the MCP-PMT to photons at a high repetition rate. This pixel-based method was inspired by earlier results showing that damage to the photocathode of the MCP-PMT occurs primarily at the site of light exposure and that the surrounding region undergoes minimal damage. One advantage of the pixel-based method is that it allows the dynamics of photo-cathode damage to be studied at multiple locations within the same MCP-PMT under different operating conditions. In this work, we use the pixel-based accelerated lifetime test to investigate the aging behavior of a 20 cm x 20 cm Large Area Picosecond Photo Detector (LAPPD) manufactured by INCOM Inc. at multiple locations within the same device under different operating conditions. We compare the aging behavior of the MCP-PMT obtained from the first lifetime test conducted under high gain conditions to the lifetime obtained at a different gain. Through this work, we aim to correlate the lifetime of the MCP-PMT and the rate of ion feedback, which is a function of the gain of each MCP, and which can also vary from point to point across a large area (400 $cm^2$) MCP. The tests were made possible by the uniqueness of the LAPPD design, which allows independent control of the gain of the chevron stacked MCPs. We will further discuss the implications of our results for optimizing the operating conditions of the detector when used in high event rate experiments.Keywords: electron multipliers (vacuum), LAPPD, lifetime, micro-channel plate photo-multipliers tubes, photoemission, time-of-flight
Procedia PDF Downloads 18018252 A Modelling of Main Bearings in the Two-Stroke Diesel Engine
Authors: Marcin Szlachetka, Rafal Sochaczewski, Lukasz Grabowski
Abstract:
This paper presents the results of the load simulations of main bearings in a two-stroke Diesel engine. A model of an engine lubrication system with connections of its main lubrication nodes, i.e., a connection of its main bearings in the engine block with the crankshaft, a connection of its crankpins with its connecting rod and a connection of its pin and its piston has been created for our calculations performed using the AVL EXCITE Designer. The analysis covers the loads given as a pressure distribution in a hydrodynamic oil film, a temperature distribution on the main bush surfaces for the specified radial clearance values as well as the impact of the force of gas on the minimum oil film thickness in the main bearings depending on crankshaft rotational speeds and temperatures of oil in the bearings. One of the main goals of the research has been to determine whether the minimum thickness of the oil film at which fluid friction occurs can be achieved for each value of crankshaft speed. Our model calculates different oil film parameters, i.e., its thickness, a pressure distribution there, the change in oil temperature. Additional enables an analysis of an oil temperature distribution on the surfaces of the bearing seats. It allows verifying the selected clearances in the bearings of the main engine under normal operation conditions and extremal ones that show a significant increase in temperature above the limit value. The research has been conducted for several engine crankshaft speeds ranging from 1000 rpm to 4000 rpm. The oil pressure in the bearings has ranged 2-5 bar according to engine speeds and the oil temperature has ranged 90-120 °C. The main bearing clearance has been adopted for the calculation and analysis as 0.025 mm. The oil classified as SAE 5W-30 has been used for the simulations. The paper discusses the selected research results referring to several specific operating points and different temperatures of the lubricating oil in the bearings. The received research results show that for the investigated main bearing bushes of the shaft, the results fall within the ranges of the limit values despite the increase in the oil temperature of the bearings reaching 120˚C. The fact that the bearings are loaded with the maximum pressure makes no excessive temperature rise on the bush surfaces. The oil temperature increases by 17˚C, reaching 137˚C at a speed of 4000 rpm. The minimum film thickness at which fluid friction occurs has been achieved for each of the operating points at each of the engine crankshaft speeds. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: diesel engine, main bearings, opposing pistons, two-stroke
Procedia PDF Downloads 13918251 Off Design Modelling of 650MW Combined Cycle Gas Turbine Power Plant Integrated with a Retrofitted Inlet Fogging System
Authors: Osarobo Omorogieva Ighodaro, Josephus Otejere
Abstract:
This paper contains the modelling and simulation of GT13E2 combined cycle gas turbine with the aid of the software EBSILON PROFESSIONAL. The design mode was modeled using guaranteed performance data from the power plant, in the off design, temperature variation of ambient air and fogging (spray water at inlet to compressor) was simulated. The fogging was simulated under two different modes; constant fuel consumption and constant turbine exhaust temperature .The model results were validated using actual operating data by applying error percentage analysis. The validation results obtained ranged from -0.0038% to 0% in design condition while the results varied from -0.9202% to 10.24% The model shows that fogging decreases compressor inlet temperature which in turn decreases the power required to drive the compressor hence improving the simple cycle efficiency and hence increasing power generated.Keywords: inlet fogging, off design, combined cycle, modelling
Procedia PDF Downloads 4118250 PSS and SVC Controller Design by BFA to Enhance the Power System Stability
Authors: Saeid Jalilzadeh
Abstract:
Designing of PSS and SVC controller based on Bacterial Foraging Algorithm (BFA) to improve the stability of power system is proposed in this paper. Same controllers for PSS and SVC has been considered and Single machine infinite bus (SMIB) system with SVC located at the terminal of generator is used to evaluate the proposed controllers. BFA is used to optimize the coefficients of the controllers. Finally simulation for a special disturbance as an input power of generator with the proposed controllers in order to investigate the dynamic behavior of generator is done. The simulation results demonstrate that the system composed with optimized controllers has an outstanding operation in fast damping of oscillations of power system.Keywords: PSS, SVC, SMIB, optimize controller
Procedia PDF Downloads 45718249 Pathway to Sustainable Shipping: Electric Ships
Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang
Abstract:
Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.Keywords: cost reduction, electric ship, environmental protection, sustainable shipping
Procedia PDF Downloads 7818248 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System
Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue
Abstract:
The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio
Procedia PDF Downloads 10218247 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry
Authors: Rudi Kurniawan Arief
Abstract:
Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED
Procedia PDF Downloads 17118246 Rapides-Des-Îles Main Spillway - Rehabilitation
Authors: Maryam Kamali Nezhad
Abstract:
As part of the project to rehabilitate the main spillway ("main") of the Rapides-des-Îles development in 2019, it was noted that there is a difference between the water level of the intake gauge and the level measured at the main spillway. The Rapides-des-Îles Generating Station is a Hydro-Québec hydroelectric generating station and dam located on the Ottawa River in the Abitibi-Témiscamingue administrative region of Québec. This plant, with an installed capacity of 176 MW, was commissioned in 1966. During the start-up meeting held at the site in May 2019, it was noticed that the water level upstream of the main spillway was considerably higher than the water level at the powerhouse intake. Measurements showed that the level was 229.46 m, whereas the normal operating level (NOL) and the critical maximum level (CML) used in the design were 228.60 m and 229.51 m, respectively. Considering that the water level had almost reached the maximum critical level of the structure despite a flood with a recurrence period of about 100 years, the work was suspended while the project was being decided. This is the first time since the Rapides des îles project was commissioned that a significant difference in elevation between the water level at the powerhouse (intake) and the main spillway has been observed. Following this observation, the contractor's work was suspended. The objective of this study is to identify the reason(s) for this problem and find solutions. Then determine the new upstream levels at the main spillway at which the safety of the structure is ensured and then adjust the engineering of the main spillway in the rehabilitation project accordingly.Keywords: spillway, rehabilitation, water level, powerhouse, normal operating level, critical maximum level, safety of the structure
Procedia PDF Downloads 7318245 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor
Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar
Abstract:
In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method
Procedia PDF Downloads 34018244 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material
Authors: Tania Bose, Minto Rattan, Neeraj Chamoli
Abstract:
In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: creep, isotropic, steady-state, thermal gradation
Procedia PDF Downloads 23318243 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System
Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen
Abstract:
This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.Keywords: artificial immune system, collaborative filtering, recommendation system, similarity
Procedia PDF Downloads 53618242 The Control System Architecture of Space Environment Simulator
Authors: Zhan Haiyang, Gu Miao
Abstract:
This article mainly introduces the control system architecture of space environment simulator, simultaneously also briefly introduce the automation control technology of industrial process and the measurement technology of vacuum and cold black environment. According to the volume of chamber, the space environment simulator is divided into three types of small, medium and large. According to the classification and application of space environment simulator, the control system is divided into the control system of small, medium, large space environment simulator and the centralized control system of multiple space environment simulators.Keywords: space environment simulator, control system, architecture, automation control technology
Procedia PDF Downloads 47518241 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm
Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali
Abstract:
Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir
Procedia PDF Downloads 26718240 Unified Public Transportation System for Mumbai Using Radio Frequency Identification
Authors: Saurabh Parkhedkar, Rajanikant Tenguria
Abstract:
The paper proposes revamping the public transportation system in Mumbai with the use of Radio Frequency Identification (RFID) technology in order to provide better integration and compatibility across various modes of transport. In Mumbai, mass transport system suffers from poor inter-compatible ticketing system, subpar money collection techniques, and lack of planning for optimum utilization of resources. Development of suburbs and growth in population will result in growing demand for mass transportation networks. Hence, the growing demand for the already overburdened public transportation system is only going to worsen the scenario. Thus, a superior system is essential in order to regulate, manage and supervise future transportation needs. The proposed RFID based system integrates Mumbai Suburban Railway, BEST (Brihanmumbai Electric Supply and Transport Undertaking transport wing) Bus, Mumbai Monorail and Mumbai Metro systems into a Unified Public Transportation System (UPTS). The UTPS takes into account various drawbacks of the present day system and offers solution, suitable for the modern age Mumbai.Keywords: urbanization, transportation, RFID, Mumbai, public transportation, smart city.
Procedia PDF Downloads 41418239 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
Authors: Joon-Hoon Park
Abstract:
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification
Procedia PDF Downloads 50918238 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies
Authors: Yalda Zarnegarnia, Shari Messinger
Abstract:
Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.Keywords: biomarker, correlation, familial paired design, ROC curve
Procedia PDF Downloads 24018237 Intelligent Control of Bioprocesses: A Software Application
Authors: Mihai Caramihai, Dan Vasilescu
Abstract:
The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.Keywords: intelligent, control, fuzzy model, bioprocess optimization
Procedia PDF Downloads 32718236 The Effects of Logistics Applications on Logistics Activities of Service Providers: An Assessment of a 3PL Company in Turkey
Authors: Fatmanur Avar, Kubra G. Kostepen, Seda Lafci
Abstract:
In today’s world, technological innovations have brought out entirely new business understanding. Companies operating in logistics have become more flexible to business trends such as digitalization, innovation, sustainability, flexibility, and productivity. Through the arrival of the fourth industrial revolution called as industry 4.0 approach, the logistics concepts have been redefined. By adopting automated planning and scheduling, organizing and controlling systems such as Transportation Management System (TMS), Enterprise Resource Planning (ERP), warehouse control systems, it will be possible for businesses to be ahead of logistics process. In this research, the aim is to reveal the effects of logistics 4.0 applications for a third party logistics service provider (3PL) located in Turkey. Also, the impacts of logistics 4.0 on key performance indicators (KPI) are examined under the scope of the study. As a methodology, a semi-structured interview is conducted with a global 3PL company and data collected from interviews is analyzed with content analysis. At the end of the analysis, it is presented the effects of logistics 4.0 applications on logistics activities of the company. Limitations and suggestions are also offered.Keywords: key performance indicators, KPI, logistics activities, logistics 4.0, 3PL
Procedia PDF Downloads 18418235 Photovoltaic Array Cleaning System Design and Evaluation
Authors: Ghoname Abdullah, Hidekazu Nishimura
Abstract:
Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic.Keywords: cleaning system, dust accumulation, PV array, PV module, soiling
Procedia PDF Downloads 13018234 The Nuclear Power Plant Environment Monitoring System through Mobile Units
Authors: P. Tanuska, A. Elias, P. Vazan, B. Zahradnikova
Abstract:
This article describes the information system for measuring and evaluating the dose rate in the environment of nuclear power plants Mochovce and Bohunice in Slovakia. The article presents the results achieved in the implementation of the EU project–Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants. The objectives included improving the system of acquisition, measuring and evaluating data with mobile and autonomous units applying new knowledge from research. The article provides basic and specific features of the system and compared to the previous version of the system, also new functions.Keywords: information system, dose rate, mobile devices, nuclear power plant
Procedia PDF Downloads 37718233 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 12718232 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis
Authors: Thanida Sritangthong, Suksun Amornraksa
Abstract:
By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis
Procedia PDF Downloads 31918231 Design and Implementation of an Efficient Solar-Powered Pumping System
Authors: Mennatallah M. Fouad, Omar Hussein, Lamia A. Shihata
Abstract:
The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions.Keywords: efficient solar pumping, PV cleaning, PV cooling, PV-operated water pump
Procedia PDF Downloads 13618230 Crop Breeding for Low Input Farming Systems and Appropriate Breeding Strategies
Authors: Baye Berihun Getahun, Mulugeta Atnaf Tiruneh, Richard G. F. Visser
Abstract:
Resource-poor farmers practice low-input farming systems, and yet, most breeding programs give less attention to this huge farming system, which serves as a source of food and income for several people in developing countries. The high-input conventional breeding system appears to have failed to adequately meet the needs and requirements of 'difficult' environments operating under this system. Moreover, the unavailability of resources for crop production is getting for their peaks, the environment is maltreated by excessive use of agrochemicals, crop productivity reaches its plateau stage, particularly in the developed nations, the world population is increasing, and food shortage sustained to persist for poor societies. In various parts of the world, genetic gain at the farmers' level remains low which could be associated with low adoption of crop varieties, which have been developed under high input systems. Farmers usually use their local varieties and apply minimum inputs as a risk-avoiding and cost-minimizing strategy. This evidence indicates that the conventional high-input plant breeding system has failed to feed the world population, and the world is moving further away from the United Nations' goals of ending hunger, food insecurity, and malnutrition. In this review, we discussed the rationality of focused breeding programs for low-input farming systems and, the technical aspect of crop breeding that accommodates future food needs and its significance for developing countries in the decreasing scenario of resources required for crop production. To this end, the application of exotic introgression techniques like polyploidization, pan-genomics, comparative genomics, and De novo domestication as a pre-breeding technique has been discussed in the review to exploit the untapped genetic diversity of the crop wild relatives (CWRs). Desired recombinants developed at the pre-breeding stage are exploited through appropriate breeding approaches such as evolutionary plant breeding (EPB), rhizosphere-related traits breeding, and participatory plant breeding approaches. Populations advanced through evolutionary breeding like composite cross populations (CCPs) and rhizosphere-associated traits breeding approach that provides opportunities for improving abiotic and biotic soil stress, nutrient acquisition capacity, and crop microbe interaction in improved varieties have been reviewed. Overall, we conclude that low input farming system is a huge farming system that requires distinctive breeding approaches, and the exotic pre-breeding introgression techniques and the appropriate breeding approaches which deploy the skills and knowledge of both breeders and farmers are vital to develop heterogeneous landrace populations, which are effective for farmers practicing low input farming across the world.Keywords: low input farming, evolutionary plant breeding, composite cross population, participatory plant breeding
Procedia PDF Downloads 5518229 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine
Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski
Abstract:
The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization
Procedia PDF Downloads 38718228 Collaborative Early Warning System: An Integrated Framework for Mitigating Impacts of Natural Hazards in the UAE
Authors: Abdulla Al Hmoudi
Abstract:
The impacts and costs of natural disasters on people, properties and the environment is often severe when they occur on a large scale or when not prepared for. Factors such as impacts of climate change, urban growth, poor planning to mention a few, have continued to significantly increase the frequencies and aggravate the impacts of natural hazards across the world; the United Arab Emirates (UAE) inclusive. The lack of deployment of an early warning system, low risk and hazard knowledge and impact of natural hazard experienced in some communities in the UAE have emphasised the need for more effective early warning systems. This paper focuses on the collaborative approach taken to instituting and implementing an early warning system. Using mixed methods 888 people completed the questionnaire and eight people were interviewed in Abu Dhabi. The results indicate that the collaborative approach to early warning system is UAE is needed, but lacks essential principles of the early warning system and currently underutilised. It is recommended that the collaborative early warning system is applied at every stage of the early warning system with the specific responsibility of each stakeholder and actor.Keywords: community, early warning system, emergency management, UAE
Procedia PDF Downloads 14418227 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq, Rachid Elbachtiri
Abstract:
The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.Keywords: photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter
Procedia PDF Downloads 40218226 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 137