Search results for: mixture regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19898

Search results for: mixture regression model

19088 Bioconversion of Capsaicin Using the Optimized Culture Broth of Lipase Producing Bacterium of Stenotrophomonas maltophilia

Authors: Doostishoar Farzad, Forootanfar Hamid, Hasan-Bikdashti Morvarid, Faramarzi Mohammad Ali, Ameri Atefe

Abstract:

Introduction: Chili peppers and related plants in the family of capsaicum produce a mixture of capsaicins represent anticarcinogenic, antimutagenic, and chemopreventive properties. Vanillylamine, the main product of capsaicin hydrolysis is applied as a precursor for manufacturing of natural vanillin (a famous flavor). It is also used in the production of synthetic capsaicins harboring a wide variety of physiological and biological activities such as antibacterial and anti-inflammatory effects as well as enhancing of adrenal catecholamine secretion, analgesic, and antioxidative activities. The ability of some lipases, such as Novozym 677 BG and Novozym 435 and also some proteases e.g. trypsine and penicillin acylase, in capsaicin hydrolysis and green synthesis of vanillylamine has been investigated. In the present study the optimized culture broth of a newly isolated lipase-producing bacterial strain (Stenotrophomonas maltophilia) applied for the hydrolysis of capsaicin. Materials and methods: In order to compare hydrolytic activity of optimized and basal culture broth through capsaicin 2 mL of each culture broth (as sources of lipase) was introduced to capsaicin solution (500 mg/L) and then the reaction mixture (total volume of 3 mL) was incubated at 40 °C and 120 rpm. Samples were taken every 2 h and analyzed for vanillylamine formation using HPLC. Same reaction mixture containing boiled supernatant (to inactivate lipase) designed as blank and each experiment was done in triplicate. Results: 215 mg/L of vanillylamine was produced after the treatment of capsaicin using the optimized medium for 18 h, while only 61 mg/L of vanillylamine was detected in presence of the basal medium under the same conditions. No capsaicin conversion was observed in the blank sample, in which lipase activity was suppressed by boiling of the sample for 10 min. Conclusion: The application of optimized broth culture for the hydrolysis of capsaicin led to a 43% conversion of that pungent compound to vanillylamine.

Keywords: Capsaicin, green synthesis, lipase, stenotrophomonas maltophilia

Procedia PDF Downloads 479
19087 Changes in Chromatographically Assessed Fatty Acid Profile during Technology of Dairy Products

Authors: Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Mindaugas Malakauskas, Loreta Serniene

Abstract:

Dairy product manufacturers constantly are looking for new markets for their production. And in most cases, the problem of product compliance with the composition requirements of foreign products is highlighted. This is especially true of the composition of milk fat in dairy products. It is well known that there are many factors such as feeding ratio, season, cow breed, stage of lactation that affect the fatty acid composition in milk. However, there is less evidence on the impact of the technological process on the composition of fatty acids in raw milk and products made from it. In this study the influence of the technological process on fat composition in 82% fat butter, 15% fat curd, 3.6% fat yogurt and 2.5% fat UHT milk was determined. The samples were collected at each stage of production, starting with raw milk and ending with the final product in the Lithuanian milk-processing company. Fatty acids methyl esters were quantified using a GC (Clarus 680, Perkin Elmer) equipped with flame ionization detector (FID) and a capillary column SP-2560, 100 m x 0.25 mm id x 0.20 µm. Fatty acids peaks were identified using Supelco® 37 Component FAME Mix. The concentration of each fatty acid was expressed in percent of the total fatty acid amount. In the case of UHT milk production, it was compared raw milk, cream, milk mixture, and UHT milk but significant differences were not estimated between these stages. Analyzing stages of the yogurt production (raw milk, pasteurized milk, and milk with a starter culture and yogurt), no significant changes were detected between stages as well. A slight difference was observed with C4:0 - a percentage of this fatty acid was less (p=0.053) in the final stage than in milk with the starter culture. During butter production, the composition of fatty acids in raw cream, buttermilk, and butter did not change significantly. Only C14:0 decreased in the butter then compared to buttermilk. The curd fatty acid analysis showed the increase of C6:0, C8:0, C10:0, C11:0, C12:0 C14:0 and C17:0 at the final stage when compared to raw milk, cream, milk mixture, and whey. Meantime the increase of C18:1n9c (in comparison with milk mixture and curd) and C18:2n6c (in comparison with raw milk, milk mixture, and curd) was estimated in cream. The results of this study suggest that the technological process did not affect the composition of fatty acids in UHT milk, yogurt, butter, and curd but had the impact on the concentration of individual fatty acids. In general, all of the fatty acids from the raw milk were converted into the final product, only some of them slightly changed the concentration. Therefore, in order to ensure an appropriate composition of certain fatty acids in the final product, producers must carefully choose the raw milk. Acknowledgment: This research was funded by Lithuanian Ministry of Agriculture (No. MT-17-13).

Keywords: dairy products, fat composition, fatty acids, technological process

Procedia PDF Downloads 171
19086 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 146
19085 The Impact of Unconditional and Conditional Conservatism on Cost of Equity Capital: A Quantile Regression Approach for MENA Countries

Authors: Khalifa Maha, Ben Othman Hakim, Khaled Hussainey

Abstract:

Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.

Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries

Procedia PDF Downloads 358
19084 The Impact of Job Meaningfulness on the Relationships between Job Autonomy, Supportive Organizational Climate, and Job Satisfaction

Authors: Sashank Nyapati, Laura Lorente-Prieto, Maria Peiro

Abstract:

The general objective of this study is to analyse the mediating role of meaningfulness in the relationships between job autonomy and job satisfaction and supportive organizational climate and job satisfaction. Theories such as the Job Characteristics Model, Conservation of Resources theory, as well as the Job Demands-Resources theory were used as theoretical framework. Data was obtained from the 5th European Working Conditions Survey (EWCS), and sample was composed of 1005 and 1000 workers from Spain and Portugal respectively. The analysis was conducted using the SOBEL Macro for SPSS (A multiple regression mediation model) developed by Preacher and Hayes in 2003. Results indicated that Meaningfulness partially mediates both the Job Autonomy-Job Satisfaction as well as the Supportive Organizational Climate-Job Satisfaction relationships. However, the percentages are large enough to draw substantial conclusions, especially that Job Meaningfulness plays an essential – if indirect – role in the amount of Satisfaction that one experiences at work. Some theoretical and practical implications are discussed.

Keywords: meaningfulness, job autonomy, supportive organizational climate, job satisfaction

Procedia PDF Downloads 534
19083 Increased Stability of Rubber-Modified Asphalt Mixtures to Swelling, Expansion and Rebound Effect during Post-Compaction

Authors: Fernando Martinez Soto, Gaetano Di Mino

Abstract:

The application of rubber into bituminous mixtures requires attention and care during mixing and compaction. Rubber modifies the properties because it reacts in the internal structure of bitumen at high temperatures changing the performance of the mixture (interaction process of solvents with binder-rubber aggregate). The main change is the increasing of the viscosity and elasticity of the binder due to the larger sizes of the rubber particles by dry process but, this positive effect is counteracted by short mixing times, compared to wet technology, and due to the transport processes, curing time and post-compaction of the mixtures. Therefore, negative effects as swelling of rubber particles, rebounding effect of the specimens and thermal changes by different expansion of the structure inside the mixtures, can change the mechanical properties of the rubberized blends. Based on the dry technology, different asphalt-rubber binders using devulcanized or natural rubber (truck and bus tread rubber), have served to demonstrate these effects and how to solve them into two dense-gap graded rubber modified asphalt concrete mixes (RUMAC) to enhance the stability, workability and durability of the compacted samples by Superpave gyratory compactor method. This paper specifies the procedures developed in the Department of Civil Engineering of the University of Palermo during September 2016 to March 2017, for characterizing the post-compaction and mix-stability of the one conventional mixture (hot mix asphalt without rubber) and two gap-graded rubberized asphalt mixes according granulometry for rail sub-ballast layers with nominal size of Ø22.4mm of aggregates according European standard. Thus, the main purpose of this laboratory research is the application of ambient ground rubber from scrap tires processed at conventional temperature (20ºC) inside hot bituminous mixtures (160-220ºC) as a substitute for 1.5%, 2% and 3% by weight of the total aggregates (3.2%, 4.2% and, 6.2% respectively by volumetric part of the limestone aggregates of bulk density equal to 2.81g/cm³) considered, not as a part of the asphalt binder. The reference bituminous mixture was designed with 4% of binder and ± 3% of air voids, manufactured for a conventional bitumen B50/70 at 160ºC-145ºC mix-compaction temperatures to guarantee the workability of the mixes. The proportions of rubber proposed are #60-40% for mixtures with 1.5 to 2% of rubber and, #20-80% for mixture with 3% of rubber (as example, a 60% of Ø0.4-2mm and 40% of Ø2-4mm). The temperature of the asphalt cement is between 160-180 ºC for mixing and 145-160 ºC for compaction, according to the optimal values for viscosity using Brookfield viscometer and 'ring and ball' - penetration tests. These crumb rubber particles act as a rubber-aggregate into the mixture, varying sizes between 0.4mm to 2mm in a first fraction, and 2-4mm as second proportion. Ambient ground rubber with a specific gravity of 1.154g/cm³ is used. The rubber is free of loose fabric, wire, and other contaminants. It was found optimal results in real beams and cylindrical specimens with each HMA mixture reducing the swelling effect. Different factors as temperature, particle sizes of rubber, number of cycles and pressures of compaction that affect the interaction process are explained.

Keywords: crumb-rubber, gyratory compactor, rebounding effect, superpave mix-design, swelling, sub-ballast railway

Procedia PDF Downloads 243
19082 A Preliminary Study of the Subcontractor Evaluation System for the International Construction Market

Authors: Hochan Seok, Woosik Jang, Seung-Heon Han

Abstract:

The stagnant global construction market has intensified competition since 2008 among firms that aim to win overseas contracts. Against this backdrop, subcontractor selection is identified as one of the most critical success factors in overseas construction project. However, it is difficult to select qualified subcontractors due to the lack of evaluation standards and reliability. This study aims to identify the problems associated with existing subcontractor evaluations using a correlations analysis and a multiple regression analysis with pre-qualification and performance evaluation of 121 firms in six countries.

Keywords: subcontractor evaluation system, pre-qualification, performance evaluation, correlation analysis, multiple regression analysis

Procedia PDF Downloads 365
19081 Smallholder Participation in Organized Retail Markets: Evidence from India

Authors: Kedar Vishnu, Parmod Kumar

Abstract:

India is becoming most favored retail destination in the world. The organized retail has presented many opportunities to farmers to increase income by shifting cropping pattern from food grains to commercial crops. Previous research revealed potential benefits for farmers by supplying fruits and vegetables to organized retail channels. However the supply of fruits and vegetables from small and marginal farmers remain low than expected. The main objective of this paper is to identify the factors determining market participation of smallholder farmers in modern organized retail chains. Attempt is also made to find out factors influencing the choice of participation in particular organized retail collection centers as compared to other organized retail. The paper was based on primary survey of 40 Beans and Tomato farmers who supply to organized retail collection centers from Karnataka, India. Multiple regression technique is used to identify the factors determining quantity sold at collection centers. The regression result, show that area under vegetables, yield, and price from modern collection center and having access to technical help were found significantly affecting quantity sold into modern organized retail channels. On the opposite, increased rejection rates and vegetable prices at APMC were found influencing farmers decision into the reverse side. Empirical result of the multinomial logit model show that Reliance fresh has tendency to prefer large farmers who can supply more quality and better quantity compared with TESCO and More collection centers. The negative sign of area, having access to technical help, transportation cost, and number of bore wells led to higher probability of farmers to participate in Reliance Fresh collection centers as compared with More and TESCO.

Keywords: fruits, vegetables, organized retail markets, multinomial logit model

Procedia PDF Downloads 344
19080 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 163
19079 Applications of Nonlinear Models to Measure and Predict Thermo Physical Properties of Binary Liquid Mixtures1, 4 Dioxane with Bromo Benzene at Various Temperatures

Authors: R. Ramesh, M. Y. M. Yunus, K. Ramesh

Abstract:

The study conducted in this research are Viscosities, η, and Densities ,ρ, of 1, 4-dioxane with Bromobenzene at different mole fractions and various temperatures in the atmospheric pressure condition. From experimentations excess volumes, VE, and deviations in viscosities, Δη, of mixtures at infinite dilutions have been obtained. The measured systems exhibited positive values of VmE and negative values of Δη. The binary mixture 1, 4 dioxane + Bromobenzene show positive VE and negative Δη with increasing temperatures. The outcomes clearly indicate that weak interactions present in mixture. It is mainly because of number and position of methyl groups exist in these aromatic hydrocarbons. These measured data tailored to the nonlinear models to derive the binary coefficients. Standard deviations have been considered between the fitted outcomes and the calculated data is helpful deliberate mixing behavior of the binary mixtures. It can conclude that in our cases, the data found with the values correlated by the corresponding models very well. The molecular interactions existing between the components and comparison of liquid mixtures were also discussed.

Keywords: 1, 4 dioxane, bromobenzene, density, excess molar volume

Procedia PDF Downloads 411
19078 Syntax and Words as Evolutionary Characters in Comparative Linguistics

Authors: Nancy Retzlaff, Sarah J. Berkemer, Trudie Strauss

Abstract:

In the last couple of decades, the advent of digitalization of any kind of data was probably one of the major advances in all fields of study. This paves the way for also analysing these data even though they might come from disciplines where there was no initial computational necessity to do so. Especially in linguistics, one can find a rather manual tradition. Still when considering studies that involve the history of language families it is hard to overlook the striking similarities to bioinformatics (phylogenetic) approaches. Alignments of words are such a fairly well studied example of an application of bioinformatics methods to historical linguistics. In this paper we will not only consider alignments of strings, i.e., words in this case, but also alignments of syntax trees of selected Indo-European languages. Based on initial, crude alignments, a sophisticated scoring model is trained on both letters and syntactic features. The aim is to gain a better understanding on which features in two languages are related, i.e., most likely to have the same root. Initially, all words in two languages are pre-aligned with a basic scoring model that primarily selects consonants and adjusts them before fitting in the vowels. Mixture models are subsequently used to filter ‘good’ alignments depending on the alignment length and the number of inserted gaps. Using these selected word alignments it is possible to perform tree alignments of the given syntax trees and consequently find sentences that correspond rather well to each other across languages. The syntax alignments are then filtered for meaningful scores—’good’ scores contain evolutionary information and are therefore used to train the sophisticated scoring model. Further iterations of alignments and training steps are performed until the scoring model saturates, i.e., barely changes anymore. A better evaluation of the trained scoring model and its function in containing evolutionary meaningful information will be given. An assessment of sentence alignment compared to possible phrase structure will also be provided. The method described here may have its flaws because of limited prior information. This, however, may offer a good starting point to study languages where only little prior knowledge is available and a detailed, unbiased study is needed.

Keywords: alignments, bioinformatics, comparative linguistics, historical linguistics, statistical methods

Procedia PDF Downloads 152
19077 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method

Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang

Abstract:

Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.

Keywords: Chronic Kidney Disease, Linear Regression, Microfluidics, Urinary Albumin

Procedia PDF Downloads 133
19076 Effect of Compaction Method on the Mechanical and Anisotropic Properties of Asphalt Mixtures

Authors: Mai Sirhan, Arieh Sidess

Abstract:

Asphaltic mixture is a heterogeneous material composed of three main components: aggregates; bitumen and air voids. The professional experience and scientific literature categorize asphaltic mixture as a viscoelastic material, whose behavior is determined by temperature and loading rate. Properties characterization of the asphaltic mixture used under the service conditions is done by compacting and testing cylindric asphalt samples in the laboratory. These samples must resemble in a high degree internal structure of the mixture achieved in service, and the mechanical characteristics of the compacted asphalt layer in the pavement. The laboratory samples are usually compacted in temperatures between 140 and 160 degrees Celsius. In this temperature range, the asphalt has a low degree of strength. The laboratory samples are compacted using the dynamic or vibrational compaction methods. In the compaction process, the aggregates tend to align themselves in certain directions that lead to anisotropic behavior of the asphaltic mixture. This issue has been studied in the Strategic Highway Research Program (SHRP) research, that recommended using the gyratory compactor based on the assumption that this method is the best in mimicking the compaction in the service. In Israel, the Netivei Israel company is considering adopting the Gyratory Method as a replacement for the Marshall method used today. Therefore, the compatibility of the Gyratory Method for the use with Israeli asphaltic mixtures should be investigated. In this research, we aimed to examine the impact of the compaction method used on the mechanical characteristics of the asphaltic mixtures and to evaluate the degree of anisotropy in relation to the compaction method. In order to carry out this research, samples have been compacted in the vibratory and gyratory compactors. These samples were cylindrically cored both vertically (compaction wise) and horizontally (perpendicular to compaction direction). These models were tested under dynamic modulus and permanent deformation tests. The comparable results of the tests proved that: (1) specimens compacted by the vibratory compactor had higher dynamic modulus values than the specimens compacted by the gyratory compactor (2) both vibratory and gyratory compacted specimens had anisotropic behavior, especially in high temperatures. Also, the degree of anisotropy is higher in specimens compacted by the gyratory method. (3) Specimens compacted by the vibratory method that were cored vertically had the highest resistance to rutting. On the other hand, specimens compacted by the vibratory method that were cored horizontally had the lowest resistance to rutting. Additionally (4) these differences between the different types of specimens rise mainly due to the different internal arrangement of aggregates resulting from the compaction method. (5) Based on the initial prediction of the performance of the flexible pavement containing an asphalt layer having characteristics based on the results achieved in this research. It can be concluded that there is a significant impact of the compaction method and the degree of anisotropy on the strains that develop in the pavement, and the resistance of the pavement to fatigue and rutting defects.

Keywords: anisotropy, asphalt compaction, dynamic modulus, gyratory compactor, mechanical properties, permanent deformation, vibratory compactor

Procedia PDF Downloads 117
19075 Deformation Severity Prediction in Sewer Pipelines

Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed

Abstract:

Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.

Keywords: deformation, prediction, regression analysis, sewer pipelines

Procedia PDF Downloads 185
19074 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 266
19073 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 741
19072 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 18
19071 Multilevel Regression Model - Evaluate Relationship Between Early Years’ Activities of Daily Living and Alzheimer’s Disease Onset Accounting for Influence of Key Sociodemographic Factors Using a Longitudinal Household Survey Data

Authors: Linyi Fan, C.J. Schumaker

Abstract:

Background: Biomedical efforts to treat Alzheimer’s disease (AD) have typically produced mixed to poor results, while more lifestyle-focused treatments such as exercise may fare better than existing biomedical treatments. A few promising studies have indicated that activities of daily life (ADL) may be a useful way of predicting AD. However, the existing cross-sectional studies fail to show how functional-related issues such as ADL in early years predict AD and how social factors influence health either in addition to or in interaction with individual risk factors. This study would helpbetterscreening and early treatments for the elderly population and healthcare practice. The findings have significance academically and practically in terms of creating positive social change. Methodology: The purpose of this quantitative historical, correlational study was to examine the relationship between early years’ ADL and the development of AD in later years. The studyincluded 4,526participantsderived fromRAND HRS dataset. The Health and Retirement Study (HRS) is a longitudinal household survey data set that is available forresearchof retirement and health among the elderly in the United States. The sample was selected by the completion of survey questionnaire about AD and dementia. The variablethat indicates whether the participant has been diagnosed with AD was the dependent variable. The ADL indices and changes in ADL were the independent variables. A four-step multilevel regression model approach was utilized to address the research questions. Results: Amongst 4,526 patients who completed the AD and dementia questionnaire, 144 (3.1%) were diagnosed with AD. Of the 4,526 participants, 3,465 (76.6%) have high school and upper education degrees,4,074 (90.0%) were above poverty threshold. The model evaluatedthe effect of ADL and change in ADL on onset of AD in late years while allowing the intercept of the model to vary by level of education. The results suggested that the only significant predictor of the onset of AD was changes in early years’ ADL (b = 20.253, z = 2.761, p < .05). However, the result of the sensitivity analysis (b = 7.562, z = 1.900, p =.058), which included more control variables and increased the observation period of ADL, are not supported this finding. The model also estimated whether the variances of random effect vary by Level-2 variables. The results suggested that the variances associated with random slopes were approximately zero, suggesting that the relationship between early years’ ADL were not influenced bysociodemographic factors. Conclusion: The finding indicated that an increase in changes in ADL leads to an increase in the probability of onset AD in the future. However, this finding is not support in a broad observation period model. The study also failed to reject the hypothesis that the sociodemographic factors explained significant amounts of variance in random effect. Recommendations were then made for future research and practice based on these limitations and the significance of the findings.

Keywords: alzheimer’s disease, epidemiology, moderation, multilevel modeling

Procedia PDF Downloads 134
19070 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria

Authors: Justin Orimisan Ijigbade

Abstract:

The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.

Keywords: climate variability, honeybees production, humidity, rainfall and temperature

Procedia PDF Downloads 271
19069 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 298
19068 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 726
19067 Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete

Authors: Hasan Taherkhani

Abstract:

The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content.

Keywords: asphalt concrete, moisture damage, nylon fiber, tensile strength,

Procedia PDF Downloads 406
19066 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements

Authors: Sabiu Bala Muhammad, Rosli Saad

Abstract:

Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.

Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity

Procedia PDF Downloads 273
19065 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements

Authors: Zhidong Zhang, Amanda Resendez

Abstract:

This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.

Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis

Procedia PDF Downloads 130
19064 A Study of Relational Factors Associated with Online Celebrity Business and Consumer Purchase Intention

Authors: Sixing Chen, Shuai Yang

Abstract:

Online celebrity business, also known as Internet celebrity business (or Wanghong business in Chinese), is an emerging relational C2C business model, and an alternative to traditional C2C transactional business models. There are already millions of these consumers, and this number is growing. In this model, consumer purchase decisions are driven by recommendations and endorsements in videos posted online by celebrities. The purpose of this paper is to determine the relational constructs within consumer relationships in the Internet celebrity business model and to investigate relationships between the constructs and consumer purchase intention. A questionnaire-based study was conducted with consumers who had an awareness of, or prior purchase experience with online celebrities. The results of exploratory factor analysis (EFA) and multiple regression analysis revealed three valid relational constructs: product experience sharing, lifestyle association, and real-time interaction. This study indicated that these constructs had the direct effect on consumer preference and purchase intention. The findings of this study provide insight into a business model in which online shopping is driven by celebrities. They suggest that online celebrities should pay more attention to product experience sharing, life style association and real-time interaction for managing their product promotions. These are the most salient factors with respect to the relational constructs identified in this study.

Keywords: customer relationship, customer to customer, Internet celebrity, online celebrity, online marketing, purchase intention

Procedia PDF Downloads 317
19063 Current Status and a Forecasting Model of Community Household Waste Generation: A Case Study on Ward 24 (Nirala), Khulna, Bangladesh

Authors: Md. Nazmul Haque, Mahinur Rahman

Abstract:

The objective of the research is to determine the quantity of household waste generated and forecast the future condition of Ward No 24 (Nirala). For performing that, three core issues are focused: (i) the capacity and service area of the dumping stations; (ii) the present waste generation amount per capita per day; (iii) the responsibility of the local authority in the household waste collection. This research relied on field survey-based data collection from all stakeholders and GIS-based secondary analysis of waste collection points and their coverage. However, these studies are mostly based on the inherent forecasting approaches, cannot predict the amount of waste correctly. The findings of this study suggest that Nirala is a formal residential area introducing a better approach to the waste collection - self-controlled and collection system. Here, a forecasting model proposed for waste generation as Y = -2250387 + 1146.1 * X, where X = year.

Keywords: eco-friendly environment, household waste, linear regression, waste management

Procedia PDF Downloads 284
19062 Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials

Authors: K. Menad, A. Faddeg

Abstract:

Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment.

Keywords: zeolite A, zeolite X, ion exchange, water treatment

Procedia PDF Downloads 429
19061 Integrated Mass Rapid Transit (MRT) and Bus System in Singapore: MRT Ridership and the Provision of Feeder Bus Services

Authors: Devansh Jain, Shu Ting Goh

Abstract:

With the aim of improving the quality of life of people of Singapore with provision of better transport services, Land and Transport Authority Singapore recently published its Master Plan 2013. The major objectives mentioned in the plan were to make a comprehensive public transport network with better quality Mass Rapid Transit, bus services along with cycling and walking. MRT is the backbone of the transport system in Singapore, and to promote and increase the MRT ridership, good accessibility to access the MRT stations is a necessity. The aim of this paper is to investigate the relationship between MRT ridership and the provision of feeder bus services in Singapore planning areas and also to understand the hub and spoke model adopted by Singapore for provision of transport services. The findings of the study will lead to conclusions made from the Regression model developed by the various factors affecting MRT ridership, and hence will benefit to enhance the services provided by the system.

Keywords: quality of life, public transport, mass rapid transit, ridership

Procedia PDF Downloads 246
19060 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 346
19059 Corporate Sustainability Practices in Asian Countries: Pattern of Disclosure and Impact on Financial Performance

Authors: Santi Gopal Maji, R. A. J. Syngkon

Abstract:

The changing attitude of the corporate enterprises from maximizing economic benefit to corporate sustainability after the publication of Brundtland Report has attracted the interest of researchers to investigate the sustainability practices of firms and its impact on financial performance. To enrich the empirical literature in Asian context, this study examines the disclosure pattern of corporate sustainability and the influence of sustainability reporting on financial performance of firms from four Asian countries (Japan, South Korea, India and Indonesia) that are publishing sustainability report continuously from 2009 to 2016. The study has used content analysis technique based on Global Reporting Framework (3 and 3.1) reporting framework to compute the disclosure score of corporate sustainability and its components. While dichotomous coding system has been employed to compute overall quantitative disclosure score, a four-point scale has been used to access the quality of the disclosure. For analysing the disclosure pattern of corporate sustainability, box plot has been used. Further, Pearson chi-square test has been used to examine whether there is any difference in the proportion of disclosure between the countries. Finally, quantile regression model has been employed to examine the influence of corporate sustainability reporting on the difference locations of the conditional distribution of firm performance. The findings of the study indicate that Japan has occupied first position in terms of disclosure of sustainability information followed by South Korea and India. In case of Indonesia, the quality of disclosure score is considerably less as compared to other three countries. Further, the gap between the quality and quantity of disclosure score is comparatively less in Japan and South Korea as compared to India and Indonesia. The same is evident in respect of the components of sustainability. The results of quantile regression indicate that a positive impact of corporate sustainability becomes stronger at upper quantiles in case of Japan and South Korea. But the study fails to extricate any definite pattern on the impact of corporate sustainability disclosure on the financial performance of firms from Indonesia and India.

Keywords: corporate sustainability, quality and quantity of disclosure, content analysis, quantile regression, Asian countries

Procedia PDF Downloads 193