Search results for: mechanical anisotropy
3029 Development of Coir Reinforced Composite for Automotive Parts Application
Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth
Abstract:
The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test
Procedia PDF Downloads 633028 Consolidation of Carbonyl Nickel Powders by Hot Pressing
Authors: Ridvan Yamanoglu, Ismail Daoud
Abstract:
In the current study, carbonyl nickel powders were sintered by uniaxial hot pressing technique. Loose starting powders were poured directly into a graphite die with a 15.4 mm inner diameter. Two graphite punches with an outer diameter of 15 mm were inserted into the die; then the powders were sintered at different sintering temperatures, holding times and pressure conditions. The sintered samples were polished and examined by optical microscopy. Hardness and bending behavior of the sintered samples were investigated in order to determine the mechanical properties of the sintered nickel samples. To carried out the friction properties of the produced samples wear tests were studied using a pin on disc tribometer. Load and distance were selected as wear test parameters. The fracture surface of the samples after bending test was also carried out by using scanning electron microscopy.Keywords: nickel powder, sintering, hot press, mechanical properties
Procedia PDF Downloads 1663027 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing
Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi
Abstract:
Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis
Procedia PDF Downloads 5003026 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites
Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin
Abstract:
Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties
Procedia PDF Downloads 1563025 Effect of Cr2O3 on Mechanical Properties of Aluminum Produced Powder Metallurgy
Authors: Yasin Akgul, Fazil Husem, Memis Isik
Abstract:
In this study, effect of content of chromium (III) oxide on production of Al/Cr203 alloys were investigated. Experimental procedure was started with mixturing of powders in the presence of absolute ethanol, vacuum distillation technique was used for evaporation, by ultrasonic bath and mechanic stirrer. Pressing procedure was achieved by hydrolic press that has 100 tons forcing for production of 25 mm diameter compact green billets. Green bodies were sintered at 600 °C in argon atmosphere. Scanning electron microscope (SEM) analysis for characterization of microstructure, compression test for determination of strength and Vickers test for measuring of hardness of sintered billets were done. End of the study is concluded that, enhancement of physical and mechanical properties is observed by increasing content of chromium (III) oxide.Keywords: aluminium, chromium (III) oxide, powder metallurgy, sintering
Procedia PDF Downloads 2283024 Characterization and Nanostructure Formation of Banana Peels Nanosorbent with Its Application
Authors: Opeyemi Atiba-Oyewo, Maurice S. Onyango, Christian Wolkersdorfer
Abstract:
Characterization and nanostructure formation of banana peels as sorbent material are described in this paper. The transformation of this agricultural waste via mechanical milling to enhance its properties such as changed in microstructure and surface area for water pollution control and other applications were studied. Mechanical milling was employed using planetary continuous milling machine with ethanol as a milling solvent and the samples were taken at time intervals between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed three typical structures with different deformation mechanisms and the grain-sizes within the range of (71-12 nm), nanostructure of the particles and fibres. The particle size decreased from 65µm to 15 nm as the milling progressed for a period of 30 h. The morphological properties of the materials indicated that the particle shapes becomes regular and uniform as the milling progresses. Furthermore, particles fracturing resulted in surface area increment from 1.0694-4.5547 m2/g. The functional groups responsible for the banana peels capacity to coordinate and remove metal ions, such as the carboxylic and amine groups were identified at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption or any application will depend on the composition of the pollutant to be eradicated.Keywords: characterization, nanostructure, nanosorbent, eco-friendly, banana peels, mechanical milling, water quality
Procedia PDF Downloads 2833023 Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives
Authors: Oiane Ruiz de Azua, Salvador Borros, Nuria Agullo, Jordi Arbusa
Abstract:
Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces.Keywords: epoxy adhesive, manufacturing process of pieces, sulfanilamide, tackifiers
Procedia PDF Downloads 1803022 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells
Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin
Abstract:
Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology
Procedia PDF Downloads 3763021 Improvement of Mechanical Properties and Corrosion Resistance of AA7056 Aluminum Alloys by the Non-isothermal Aging Process
Authors: Tse-An Pan, Sheng-Long Lee
Abstract:
The effect of non-isothermal aging on the mechanical properties and corrosion resistance of Al-9Zn-2.3Mg-1.9Cu (AA7056) alloys was investigated. The results revealed that thick materials were limited to retrogression and re-aging treatment (RRA). It could not reach the retrogression temperature in the RRA treatment. Compared with the RRA treatment, the non-isothermal aging (NIA) treatment produced discontinuous precipitates at grain boundaries, while the intragranular precipitates were fine and dense. The strength was similar to that of the RRA treatment; the corrosion resistance of the alloy was significantly improved by NIA aging. NIA treatment was less affected by the thickness of the alloy. The difference between the actual temperature and the setting temperature of the alloy is minimal during the aging process. The combination of properties could overcome the fact that RRA treatment cannot handle thick materials.Keywords: Al-Zn-Mg-Cu alloy, corrosion, retrogression, re-aging, non-isothermal aging
Procedia PDF Downloads 1783020 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System
Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka
Abstract:
The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting
Procedia PDF Downloads 1783019 Comparative Analysis of Mechanical Properties of Paddy Rice for Different Variety-Moisture Content Interactions
Authors: Johnson Opoku-Asante, Emmanuel Bobobee, Joseph Akowuah, Eric Amoah Asante
Abstract:
In recent years, the issue of postharvest losses has become a serious concern in Sub-Saharan Africa. Postharvest technology development and adaptation need urgent attention, particularly for small and medium-scale rice farmers in Africa. However, to better develop any postharvest technology, knowledge of the mechanical properties of different varieties of paddy rice is vital. There is also the issue of the development of new rice cultivars. The objectives of this research are to (1) determine the mechanical properties of the selected paddy rice varieties at varying moisture content. (2) conduct a comparative analysis of the mechanical properties of selected rice paddy for different variety-moisture content interactions. (3) determine the significant statistical differences between the mean values of the various variety-moisture content interactions The mechanical properties of AGRA rice, CRI-Amankwatia, CRI-Enapa and CRI-Dartey, four local varieties developed by Crop Research Institute of Ghana are compared at 11.5%, 13.0% and 16.5% dry basis moisture content. The mechanical properties measured are Sphericity, Aspect ratio, Grain mass, 1000 Grain mass, Bulk Density, True Density, Porosity and Angle of Repose. Samples were collected from the Kwadaso Agric College of the CRI in Kumasi. The samples were threshed manually and winnowed before conducting the experiment. The moisture content was determined on a dry basis using the Moistex Screw-Type Digital Grain Moisture Meter. Other equipment used for data collection were venire calipers and Citizen electronic scale. A 4×3 factorial arrangement was used in a completely randomized design in three replications. Tukey's HSD comparisons test was conducted during data analysis to compare all possible pairwise combinations of the various varieties’ moisture content interaction. From the results, it was concluded that Sphericity recorded 0.391 mm³ to 0.377 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5%, respectively, whereas Aspect Ratio recorded 0.298 mm³ to 0.269 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5% respectively. For grain mass, AGRA rice at 13.0% also recorded 0.0312 g as the highest score and CRI-Enapa at 13.0% obtained 0.0237 as the lowest score. For the GM1000, it was observed that it ranges from 29.33 g for CRI-Amankwatia at 16.5% moisture content to 22.54 g for CRI-Enapa at 16.5% interactions. Bulk Density ranged from 654.0 kg/m³ to 422.9 kg/m³ for CRI-Amankwatia at 16.5% and CRI-Enapa at 11.5% as the highest and lowest recordings, respectively. It was also observed that the true Density ranges from 1685.8 kg/m3 for AGRA rice at 13.0% moisture content to 1352.5 kg/m³ for CRI-Enapa at 16.5% interactions. In the case of porosity, CRI-Enapa at 11.5% received the highest score of 70.83% and CRI-Amankwatia at 16.5 received the lowest score of 55.88%. Finally, in the case of Angle of Repose, CRI-Amankwatia at 16.5% recorded the highest score of 47.3o and CRI-Enapa at 11.5% recorded the least score of 34.27o. In all cases, the difference in mean value was less than the LSD. This indicates that there were no significant statistical differences between their mean values, indicating that technologies developed and adapted for one variety can equally be used for all the other varieties.Keywords: angle of repose, aspect ratio, bulk density, porosity, sphericity, mechanical properties
Procedia PDF Downloads 983018 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level
Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti
Abstract:
The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor
Procedia PDF Downloads 2783017 Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene
Authors: Akarsh Verma, Avinash Parashar
Abstract:
The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet.Keywords: graphene, graphene oxide, ReaxFF, molecular dynamics
Procedia PDF Downloads 1773016 Effect of Process Parameters on Mechanical Properties of Friction Stir Welded Aluminium Alloy Joints Using Factorial Design
Authors: Gurjinder Singh, Ankur Gill, Amardeep Singh Kang
Abstract:
In the present work an effort has been made to study the influence of the welding parameters on tensile strength of friction stir welding of aluminum. Three process parameters tool rotation speed, welding speed, and shoulder diameter were selected for the study. Two level factorial design of eight runs was selected for conducting the experiments. The mathematical model was developed from the data obtained. The significance of coefficients and adequacy of developed models were tested by ‘t’ test and ‘F’ test respectively. The effects of process parameters on mechanical properties have been represented in the form of graphs for better understanding.Keywords: friction stir welding, aluminium alloy, mathematical model, welding speed
Procedia PDF Downloads 4393015 Fully Coupled Porous Media Model
Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li
Abstract:
This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.Keywords: coupled, implicit, monolithic, porous media
Procedia PDF Downloads 1373014 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses
Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol
Abstract:
In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.
Procedia PDF Downloads 1783013 Nano and Micro Silica Cooperating Effect on Ferrocement Mortar
Authors: Aziz Ibrahim Abdulla, Omar Mohanad Mahdi
Abstract:
The objective of this paper is to explore the effect of incorporating Nano-Silica with Silica-fume in ferrocement mortar to enhancing mechanical properties of it. One type of Nano silica with average diameter size 23nm and silica fume have been used with two percentage (1%, 2% Nano silica and 5%, 10% silica fume per weight of cement) and w/c with / without superplasticizer was been calculated by flow test method. Also three sand: cement ratios have been used (1.5, 2.0 and 2.5) with max. Aggregate size 0.6mm in this study for reference and other mixtures. Results reveal adding Nano silica with silica fume to ferrocement mortar enhances its physical and mechanical properties such as compressive strength and flexural strength. The SEM pictures and density with absorption ratio demonstrate that Nano silica with silica fume contributes to enhancement of mortar through yielding denser, more compact and uniform mixtures.Keywords: nano silica, ferrocement mortar, compresion strength, flexural strength
Procedia PDF Downloads 3803012 An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets
Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang
Abstract:
In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets.Keywords: graphene, nanoporous, Young's modulus, shear modulus
Procedia PDF Downloads 3963011 Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation
Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski
Abstract:
This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate.Keywords: biomass pretreatment, mechanical fragmentation, biomass, methane fermentation
Procedia PDF Downloads 5783010 Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles
Authors: Sayed Mansour, Mohammad Aldoasri, Nagib Elmarzugi, Nadia A. Al-Mouallimi
Abstract:
The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin.Keywords: epoxy resins, nanocomposites, clay nanoparticles, re-assembly, archaeological massive stones, mechanical properties
Procedia PDF Downloads 1123009 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing
Authors: Ridvan Yamanoglu
Abstract:
In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.Keywords: titanium, composite, nickel, hot pressing
Procedia PDF Downloads 1713008 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process
Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke
Abstract:
In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition
Procedia PDF Downloads 1973007 Constitutive Model for Analysis of Long-Term Municipal Solid Waste Landfill Settlement
Authors: Irena Basaric Ikodinovic, Dragoslav Rakic, Mirjana Vukicevic, Sanja Jockovic, Jovana Jankovic Pantic
Abstract:
Large long-term settlement occurs at the municipal solid waste landfills over an extended period of time which may lead to breakage of the geomembrane, damage of the cover systems, other protective systems or facilities constructed on top of a landfill. Also, municipal solid waste is an extremely heterogeneous material and its properties vary over location and time within a landfill. These material characteristics require the formulation of a new constitutive model to predict the long-term settlement of municipal solid waste. The paper presents a new constitutive model which is formulated to describe the mechanical behavior of municipal solid waste. Model is based on Modified Cam Clay model and the critical state soil mechanics framework incorporating time-dependent components: mechanical creep and biodegradation of municipal solid waste. The formulated constitutive model is optimized and defined with eight input parameters: five Modified Cam Clay parameters, one parameter for mechanical creep and two parameters for biodegradation of municipal solid waste. Thereafter, the constitutive model is implemented in the software suite for finite element analysis (ABAQUS) and numerical analysis of the experimental landfill settlement is performed. The proposed model predicts the total settlement which is in good agreement with field measured settlement at the experimental landfill.Keywords: constitutive model, finite element analysis, municipal solid waste, settlement
Procedia PDF Downloads 2293006 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries
Authors: Tatheer Zahra
Abstract:
Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.Keywords: auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics
Procedia PDF Downloads 1213005 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 933004 Effects of Swimming Exercise Training on Persistent Pain in Rats after Thoracotomy
Authors: Shao-Cyuan Yewang, Yu-Wen Chen
Abstract:
Background: Exercise training is well known to alleviate chronic pain syndromes improve of chronic pain. This study investigated the effect of swimming exercise training on thoracotomy and rib retraction-induced allodynia. Methods: Male Sprague Dawley rats that received animal model of persistent postthoracotomy pain. All rats were divided into three groups: sham operations group (Sham), thoracotomy and rib retraction group (TRR), and TRR with swimming exercise training for 90min/day, 7 days a week for 4 weeks (TRR-SEW). The sham group did not receive retraction of the ribs. Thus, they received a pleural incision. The levels of mechanical and cold allodynia were measured by von Frey and acetone test. Results: In von Frey test, the level of mechanical allodynia in the TRR group was significantly higher than the sham group. The level of mechanical allodynia in the TRR-SEW group was significantly lower than the TRR group. In acetone test, the level of cold allodynia in the TRR group was significantly higher than the sham group. The level of cold allodynia in the TRR-SEW group was significantly lower than the TRR group. Conclusions: These results suggest that swimming exercise training decreases persistent postthoracotomy pain caused by TRR surgery. It may provide one of the new therapeutic effects of swimming exercise training could alleviate persistent postthoracotomy pain.Keywords: chronic pain, thoracotomy pain, swimming, von Frey test, acetone test
Procedia PDF Downloads 2173003 Effects of School Facilities’ Mechanical and Plumbing Characteristics and Conditions on Student Attendance, Academic Performance and Health
Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Shalini Priyadarshini, Berangere Lartigue, Sadhana Anath-Pisipati
Abstract:
School districts throughout the United States are constantly seeking measures to improve test scores, reduce school absenteeism and improve indoor environmental quality. It is imperative to identify key building investments which will provide the largest benefits to schools in terms of improving the aforementioned factors. This study uses Analysis of Variance (ANOVA) tests to statistically evaluate the impact of a school building’s mechanical and plumbing characteristics on a child’s educational performance. The educational performance is measured via three indicators, i.e. test scores, suspensions, and absenteeism. The study investigated 125 New York City school facilities to determine the potential correlations between 50 mechanical and plumbing variables and the performance indicators. Key findings from the tests revealed that elementary schools with pneumatic systems in “good” condition have 48.8% lower percentages of students scoring at the minimum English Language Arts (ELA) competency level compared with those with no pneumatic system. Additionally, elementary schools with “unit heaters/cabinet heaters” in “good to fair” conditions have 1.1% higher attendance rates compared to schools with no “unit heaters/cabinet heaters” or those in inferior condition. Furthermore, elementary schools with air conditioning have 0.6% higher attendance rates compared to schools with no air conditioning, and those with interior floor drains in “good” condition have 1.8% higher attendance rates compared to schools with interior drains in inferior condition.Keywords: academic attendance and performance, mechanical and plumbing systems, schools, student health
Procedia PDF Downloads 1173002 Convergence of Media in New Era
Authors: Mohamad Reza Asariha
Abstract:
The development and extension of modern communication innovations at an extraordinary speed has caused crucial changes in all financial, social, social and political areas of the world. The improvement of toady and cable innovations, in expansion to expanding the generation and dissemination needs of worldwide programs; the financial defense made it more appealing. The alter of the administration of mechanical economy to data economy and benefit economy in created nations brought approximately uncommon advancements within the standards of world exchange and as a result, it caused the extension of media organizations in outside measurements, and the advancement of financial speculations in many Asian nations, beside the worldwide demand for the utilization of media merchandise, made new markets, and the media both within the household scene of the nations and within the universal field. Universal and financial are of great significance and have and viable and compelling nearness within the condition of picking up, keeping up and expanding financial control and riches within the world. Moreover, mechanical progresses and mechanical joining are critical components in media auxiliary alter. This auxiliary alter took put beneath the impact of digitalization. That’s, the method that broke the boundaries between electronic media administrations. Until presently, the direction of mass media was totally subordinate on certain styles of data transmission that were for the most part utilized. Digitization made it conceivable for any content to be effortlessly transmitted through distinctive electronic transmission styles, and this media merging has had clear impacts on media approaches and the way mass media are controlled.Keywords: media, digital era, digital ages, media convergence
Procedia PDF Downloads 723001 Elaboration and Characterization of PP/TiO2 Composites
Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour
Abstract:
The aim of present work is to characterize the PP/TiO2 blends as composites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the impact strength results which increased about 39% compared to neat PP. The rheological study showed an increase in the fluidity in all developed composite compositions, involved by the good dispersion of TiO2 particles.Keywords: composites, PP, TiO2, comixing, mechanical treatment
Procedia PDF Downloads 2703000 Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications
Authors: Mustafa Abu Ghalia, Mohammed Seddik
Abstract:
The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.Keywords: PCL/PEG, cellulose nanofibers, tissue engineering, biodegradation, compost polymers
Procedia PDF Downloads 58