Search results for: magnesium oxychloride cement (MOC)
342 The Effects of Covid-19 on Oral Health among 19 to 29 Years Old - A Cross-sectional Study in Albania
Authors: Mimoza Canga, Alketa Qafmolla, Vergjini Mulo, Irene Malagnino
Abstract:
Aim: Assessment of oral health in young people aged 18-29 years after the Covid-19 pandemic in Albania. Materials and methods: The present study was conducted at the University of Medicine in Tirana, Albania, from March 2023 to September 2023. This is s cross-sectional study. In our research, 104 students participated, of which 64 were females (61.5%) and 40 were males (38.5%). In the present survey, the participants were divided into four age groups: 18-20, 21-23, 24-26, and 27-29 years old. Majority of the sample (69%) were 18-20 years. Participants were instructed to complete the questionnaire. The study had no dropouts. The current study was conducted in accordance to Helsinki declaration. Statistical analysis was performed using IBM SPSS Statistics Version 23.0, Microsoft Windows Linux, Chicago, IL, USA. Data were analyzed using analysis of variance (ANOVA). P ≤ 0.05 was considered statistically significant. Results: This study reported that 80 (76.9%) of the participants had passed Covid-19, while 24 (23.1%) of them had not passed Covid-19. Based on our data analysis, 70 (67.3%) of the participants had symptoms such as of fever 38°C- 40.5°C and headache. They stated that were treated with Azithromycin 500 mg tablets, Augmentin 625 mg tablets, Vitamin C 1000 mg, Magnesium, and Vitamin D. 40(38.4%) of the participants noticed hypersensitivity in gums (p = 0.004) and sensitive teeth (p = 0.001) after having passed Covid-19 compared to pre-pandemic. Nearly 40 (38.4%) of the participants who passed Covid-19 were treated with painful relievers for the gums and teeth, such as ibuprofen (Advil), used Sensodyne Toothpaste for sensitive teeth and Clove oil. Conclusion: Within the limitations of this study conducted in Albania, can concluded that Covid-19 has a direct impact on oral health.Keywords: albania, Covid19, cross-sectional study, oral health
Procedia PDF Downloads 96341 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture
Authors: T. S. Ramesh Babu, D. Neeraja
Abstract:
This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight
Procedia PDF Downloads 289340 Design Improvement of Dental Implant-Based on Bone Remodelling
Authors: Solehuddin Shuib, Koay Boon Aik, Zainul Ahmad Rajion
Abstract:
There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the performance of dental implant by using different types of design. These designs are used to analyze and predict the failure of the dental implant by using finite element analysis (FEA) namely ANSYS. The bone is assumed to be fully attached to the implant or cement. Hence, results are then compared with other researchers. The results were presented in the form of Von Mises stress, normal stress, shear stress analysis, and displacement. The selected design will be analyzed further based on a theoretical calculation of bone remodeling on the dental implant. The results have shown that the design constructed passed the failure analysis. Therefore, the selected design is proven to have a stable performance at the recovery stage.Keywords: dental implant, FEA, bone remodeling, design
Procedia PDF Downloads 501339 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance
Authors: Benmalek M. Larbi, R. Harbi, S. Boukor
Abstract:
This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.Keywords: clay brick waste, mortar, properties, quarry sand
Procedia PDF Downloads 262338 Resources and Strategies towards the Development of a Sustainable Construction Materials Industry in Botswana
Authors: G. Malumbela, E. U. Masuku
Abstract:
The economy of Botswana has increased extensively since its independence. In contrast to this increase, the construction industry which is one of the key indicators of a developing nation continues to be highly dependent on imported building material products from the neighbouring countries of South Africa, Namibia, Zimbabwe, and Zambia. Only two companies in the country currently blend cement. Even then, the overwhelming majority of raw materials used in the blends are imported. Furthermore, there are no glass manufacturers in Botswana. The ceramic industry is limited to the manufacture of clay bricks notwithstanding a few studios on crockery and sanitary ware which nonetheless use imported clay. This paper presents natural resources and industrial waste products in Botswana that can be used for the development of sustainable building materials. It also investigates at the distribution and cost of other widely used building materials in the country. Finally, the present paper looks at projects and national strategies aimed at a country-wide development of a sustainable building materials industry together with their successes and hitches.Keywords: Botswana construction industry, construction materials, natural resources, sustainable materials
Procedia PDF Downloads 301337 Cryogenic Grinding of Mango (Mangifera indica L.) Peel and Its Effect on Chemical and Morphological Characteristics
Authors: Bhupinder Kaur, P. P. Srivastav
Abstract:
The fruit and vegetable industries are responsible for producing huge amount of waste, which is a problem to environmental safety and should be utilized efficiently. Mango (Mangifera indica L.) is an important commercially grown fruit and referred as the “King of fruits”. In 2015, India was the largest producer (18.506 MT) of mangoes and out of which 9.16 % lost during post-harvest handling. The mango kernel and peel represent approximately 17-22% and 7-22% of the overall mass of fruit respectively and discarded as waste. Hence, an attempt has been made with three mango cultivars (Langra, Dashehari, Fazli) to investigate the effect of cryogenic grinding on various characteristics of mango peel powder (MPP). The cryogenic grinding is an emerging technology which is used for retention of beneficial volatile and bioactive components. The feed rate was highest for Langra followed by Chausa. The samples have 2-4% fat along with significant amount of protein (4-6%) and crude fiber (9-13%). Mango peel is also a good source of minerals such as calcium, potassium, manganese, iron, copper, zinc, and magnesium. Interestingly, the significant amount of essential minerals like phosphorus and chlorine in all the varieties was found with the highest value in Langra (phosphorus 10.83% and chlorine 2.41%) which are not reported earlier. SEM analysis revealed the surface morphology and shape of the particles. Waste utilization is a promising measure from both an environmental and economic point of view. Chemical characterization of the samples indicated its potential to be used for the fortification of food products which in turn reduces hazards due to waste and improve functional quality of the foods.Keywords: cryogenic grinding, morphological, mineral composition, SEM
Procedia PDF Downloads 233336 Manufacturing of Nano Zeolite by Planetary Ball Mill and Investigation of the Effects on Concrete
Authors: Kourosh Kosari
Abstract:
This study is engineering the properties of concrete containing natural nano zeolite as supplementary cementitious material in the blended Portland-cement based binder in amounts of 5,7 and 10% by mass. Crashing of clinoptilolite zeolite is performed by means of planetary ball mill. Two types of concrete along with water to cementitious material ratio (W/(C + P)) in 0.45 and 0.4 at the ages of 7, 28 and 90 days and were compared with each other. The effect of these additives on mechanical properties (compressive and tensile strength) and durability has been investigated by Electrical Resistivity (ER) and Rapid Chloride Penetration Test (RCPT) at the ages 28 and 90 days. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) revealed that nanoparticles of natural clinoptilolite could improve quality of concrete. As a result of the tests, decrease in penetration of chloride ion and increase electrical resistivity significantly that are appropriate option for controlling of corrosion in reinforced concrete structures but increase of mechanical characteristics is not considerable.Keywords: ball mill, durability, mechanical properties, nano zeolite
Procedia PDF Downloads 320335 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).Keywords: Agadir, irrigation, scaling water, wastewater
Procedia PDF Downloads 120334 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass
Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour
Abstract:
Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.Keywords: apatite, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 128333 Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete
Authors: Kebaili Bachir
Abstract:
The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used.Keywords: compressive, concrete, quality, recycled, strength
Procedia PDF Downloads 328332 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos
Abstract:
The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR
Procedia PDF Downloads 544331 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials
Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová
Abstract:
Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.Keywords: biocorrosion, concrete, leaching, bacteria
Procedia PDF Downloads 451330 Index and Mechanical Geotechnical Properties and Their Control on the Strength and Durability of the Cainozoic Calcarenites in KwaZulu-Natal, South Africa
Authors: Luvuno N. Jele, Warwick W. Hastie, Andrew Green
Abstract:
Calcarenite is a clastic sedimentary beach rock composed of more than 50% sand sized (0.0625 – 2 mm) carbonate grains. In South Africa, these rocks occur as a narrow belt along most of the coast of KwaZulu-Natal and sporadically along the coast of the Eastern Cape. Calcarenites contain a high percentage of calcium carbonate, and due to a number of its physical and structural features, like porosity, cementing material, sedimentary structures, grain shape, and grain size; they are more prone to chemical and mechanical weathering. The objective of the research is to study the strength and compressibility characteristics of the calcarenites along the coast of KwaZulu-Natal to be able to better understand the geotechnical behaviour of these rocks, which may help to predict areas along the coast which may be potentially susceptible to failure/differential settling resulting in damage to property. A total of 148 cores were prepared and analyzed. Cores were analyzed perpendicular and parallel to bedding. Tests were carried out in accordance with the relevant codes and recommendations of the International Society for Rock Mechanics, American Standard Testing Methods, and Committee of Land and Transport Standard Specifications for Road and Bridge Works for State Road Authorities. Test carried out included: x-ray diffraction, petrography, shape preferred orientation (SPO), 3-D Tomography, rock porosity, rock permeability, ethylene glycol, slake durability, rock water absorption, Duncan swelling index, triaxial compressive strength, Brazilian tensile strength and uniaxial compression test with elastic modulus. The beach-rocks have a uniaxial compressive strength (UCS) ranging from 17,84Mpa to 287,35Mpa and exhibit three types of failure; (1) single sliding shear failure, (2) complete cone development, and (3) splitting failure. Brazilian tensile strength of the rocks ranges from 2.56 Mpa to 12,40 Ma, with those tested perpendicular to bedding showing lower tensile strength. Triaxial compressive tests indicate calcarenites have strength ranging from 86,10 Mpa to 371,85 Mpa. Common failure mode in the triaxial test is a single sliding shear failure. Porosity of the rocks varies from 1.25 % to 26.52 %. Rock tests indicate that the direction of loading, whether it be parallel to bedding or perpendicular to bedding, plays no significantrole in the strength and durability of the calcarenites. Porosity, cement type, and grain texture play major roles.UCS results indicate that saturated cores are weaker in strength compared to dry samples. Thus, water or moisture content plays a significant role in the strength and durability of the beach-rock. Loosely packed, highly porous and low magnesian-calcite bearing calcarenites show a decrease in strength compared to the densely packed, low porosity and high magnesian-calcite bearing calcarenites.Keywords: beach-rock, calcarenite, cement, compressive, failure, porosity, strength, tensile, grains
Procedia PDF Downloads 94329 Dietary Habit and Anthropometric Status in Hypertensive Patients Compared to Normotensive Participants in the North of Iran
Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahbobeh Gholipour
Abstract:
Hypertension is one of the important reasons of morbidity and mortality in countries, including Iran. It has been shown that hypertension is a consequence of the interaction of genetics and environment. Nutrients have important roles in the controlling of blood pressure. We assessed dietary habit and anthropometric status in patients with hypertension in the north of Iran, and that have special dietary habit and according to their culture. This study was conducted on 127 patients with newly recognized hypertension and the 120 normotensive participants. Anthropometric status was measured and demographic characteristics, and medical condition were collected by valid questionnaires and dietary habit assessment was assessed with 3-day food recall (two weekdays and one weekend). The mean age of participants was 58 ± 6.7 years. The mean level of energy intake, saturated fat, vitamin D, potassium, zinc, dietary fiber, vitamin C, calcium, phosphorus, copper and magnesium was significantly lower in the hypertensive group compared to the control (p < 0.05). After adjusting for energy intake, positive association was observe between hypertension and some dietary nutrients including; Cholesterol [OR: 1.1, P: 0.001, B: 0.06], fiber [OR: 1.6, P: 0.001, B: 1.8], vitamin D [OR: 2.6, P: 0.006, B: 0.9] and zinc [OR: 1.4, P: 0.006, B: 0.3] intake. Logistic regression analysis showed that there was not significant association between hypertension, weight and waist circumference. In our study, the mean intake of some nutrients was lower in the hypertensive individuals compared to the normotensive individual. Health training about suitable dietary habits and easier access to vitamin D supplementation in patients with hypertension are cost-effective tools to improve outcomes in Iran.Keywords: hypertension, north of Iran, dietary intake, weight
Procedia PDF Downloads 183328 Physicochemical Properties of Low Viscosity Banana Juice
Authors: Victor Vicent, Oscar Kibazohi
Abstract:
Banana (Musa acuminata) is one of the most largely consumed fruits in the world. It is an excellent source of potassium, antioxidants, and fiber. In East and Central African countries, banana is used to produce low viscosity clear juice using traditional kneading of ripe banana and grasses until juice oozes out. Recently, an improved method involving blending of the banana followed by pressing to separate the juice from pulp has been achieved. This study assessed the physicochemical properties of banana juice prior to product formulation. Two different banana juices from two cultivars: Pisang awak and Mbile an East African Highland Banana (EAHB) were evaluated for viscosity, sugars (sucrose, fructose, and glucose), organic acids (malic, citric and succinic acids) and minerals using the HPLC and AAS. Juice extracted from Pisang awak had a viscosity of 3.43 × 10⁻⁵ N.m⁻² s while EAHB juice had a viscosity of 6.02 × 10⁻⁵ N.m⁻² s. Sugar concentrations varied with banana place of origin. Pisang awak juice had a higher dissolved solids value of 24-28ᵒ Brix then EAHB, whose value was 18-24ᵒ Brix. Juice viscosity was 3.5–5.3 mPa.s, specific gravity was 1.0-1.1, and pH was 4.3-4.8. The average concentration of sucrose, fructose, and glucose was 1.10 g/L, 70 g/L 70 g/l, respectively for Pisang awak from lower altitude compared to 45-200 g/L 45-120 g/l and 45-120 g/L, respectively for Pisang awak from higher altitude. On the other hand, EAHB from North East Tanzania produced juice corresponding concentrations of 45 g/L, 56 g/L, and 55 g/L, respectively while another EAHB from North West of Tanzania had sucrose and fructose and glucose concentration of 155 g/L and 145 g/L. respectively. Dominant acids were malic and citric acids for pisang awak but succinic for EAHB. Dominant minerals in all cultivars were potassium 2.7-3.1 g/L followed by magnesium 0.6-2 g/L.Keywords: banana juice, sugar content, acids, minerals, quality analysis
Procedia PDF Downloads 152327 Performance of Self-Compacting Mortars Containing Foam Glass Granulate
Authors: Brahim Safi, Djamila Aboutaleb, Mohammed Saidi, Abdelbaki Benmounah, Fahima Benbrahim
Abstract:
The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction.Keywords: glass wastes, lightweight aggregate, mortar, fluidity, density, mechanical strength
Procedia PDF Downloads 228326 Ceramic Ware Waste Potential as Co-Ballast in Dense Masonry Unit Production
Authors: A. A. Ajayi-Banji, M. A. Adegbile, T. D. Akpenpuun, J. Bello, O. Omobowale, D. A. Jenyo
Abstract:
Ceramic ware waste applicability as coarse aggregate was considered in this study for dense masonry unit production. The waste was crushed into 1.4 mm particle size and mixed with natural fine aggregate in the ratio 2:3. Portland ordinary cement, aggregate, and water mix ratio was 1:7:0.5. Masonry units produced were cured for 7, 21 and 28 days prior to compressive test. The result shows that curing age have a significant effect on all the compressive strength indices inspected except for Young’s modulus. Crushing force and the compressive strength of the ceramic-natural fine aggregate blocks increased by 11.7 – 54.7% and 11.6 – 59.2% respectively. The highest ceramic-natural fine block compressive strength at yield and peak, 4.97 MPa, was obtained after 21 days curing age. Ceramic aggregate introduced into the dense blocks improved the suitability of the blocks for construction purposes.Keywords: ceramic ware waste, co-ballast, dense masonry unit, compressive strength, curing time
Procedia PDF Downloads 410325 Cranioplasty with Custom Implant Realized Using 3D Printing Technology
Authors: Trad Khodja Rafik, Mahtout Amine, Ghoul Rachid, Benbouali Amine, Boulahlib Amine, Hariza Abdelmalik
Abstract:
Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results.Keywords: cranioplasty, cranial bone loss, 3D printing technology, custom-made implants, PMMA
Procedia PDF Downloads 111324 Impact of Environmental Changes on Blood Parameters in the Pelophylax ridibundus
Authors: Murat Tosunoglu, Cigdem Gul, Nurcihan Hacioglu, Nurdan Tepeova
Abstract:
Amphibian and Reptilian species are influenced by pollution and habitat destruction. Blood parameters of Amphibia species were particularly affected by the negative environmental conditions. Studied frog samples 36 clinically normal Pelophylax ridibundus individuals were captured along the Biga Stream between April–June 2014. When comparing our findings with the Turkish legislation (Water pollution control regulation), the 1. Locality of the Biga stream in terms of total coliform classified as "high quality water" (Coliform: 866.66 MPN/100 mL), while the 2. locality was a "contaminated water" (Coliform: 53266.66 MPN/100 mL). Blood samples of the live specimens were obtained in the laboratory within one day of their capture. The blood samples were taken from the etherized frogs by means of ventriculus punctures, via heparinized hematocrit capillaries. Hematological and biochemical analyses based on high quality water and contaminated water, respectively, are as follows: Red blood cell count (444210.52-426846.15 per cubic millimeter of blood), white blood cell count (4215.78-4684.61 per cubic millimeter of blood), hematocrit value (29.25-29.43 %), hemoglobin concentration (7.76-7.22 g/dl), mean corpuscular volume (637.64-719.99 fl), mean corpuscular hemoglobin (184.78-174.75 pg), mean corpuscular hemoglobin concentration (29.44-24.82 %), glucose (103.74-124.13 mg/dl), urea (87.68-81.72 mg/L), cholesterol (148.20-197.39 mg/dl), creatinine (0.29-0.28 mg/dl), uric acid (10.26-7.55 mg/L), albumin (1.13-1.39 g/dl), calcium (11.45-9.70 mg/dl), triglyceride (135.23-155.85 mg/dl), total protein (4.26-3.73 g/dl), phosphorus (6.83-17.86 mg/dl), and magnesium (0.95-1.06 mg/dl). The some hematological parameters in P. ridibundus specimens are given for the first time in this study. No water quality dependent variation was observed in clinic hematology parameters measured.Keywords: Pelophylax ridibundus, hematological parameters, biochemistry, freshwater quality
Procedia PDF Downloads 370323 Management of Nutritional Strategies in Controlling of Autism in Children
Authors: Maryam Ghavam Sadri, Kimia Moiniafshari
Abstract:
Objectives: The prevalence of Autism in the world has taken on a growing trend. Autism is a neuro-developmental disorder that is identified at the age of three. Studies have been shown that nutritional management can control nutritional deficiencies in Autism. This review study aimed to assess the role of nutritional management strategies for Autism in children has been made. Methods: This review study was accomplished by using the keywords related to the topic, 68 articles were found (2000-2015) and finally 15 articles with criteria such as including dietary pattern, nutritional deficiencies and Autism controlling were selected. Results: The studies showed that intake of vitamins D, E, and calcium because of restricted diet (casein and gluten free) in autistic children is less than typically developing children (TYP) (p value ≤ 0.001) and as a result of restrictions on the consumption of fresh fruits and vegetables, vitamin C and magnesium intake is less than TYP children (p value ≤ 0.001). Autistic children also get omega-3 less than TYP children. Studies have shown that food sources rich in omega-3 can improve behavioral indicators, especially in reducing hyperactivity (95% CI = -2.2 - 5.2). Zinc deficiency in these children leads to a high serum level of mercury, lead and cadmium. As a result of the repetitive dietary pattern, Sodium intake in autistic children is more than TYP children (p value < 0.001).Because of low food variety in autistic children, healthy eating index (HEI) is less than TYP children (p value = 0.008).Food selectivity in Autism due to repetitive and restricted dietary pattern and nutritional deficiencies. Conclusion: Because of restricted (casein and gluten free) and repetitive dietary pattern, the intake of some micronutrients are denied in autistic children. The nutritional strategy programs appear to help controlling of Autism.Keywords: autism, food selectivity, nutrient intake, nutritional strategies
Procedia PDF Downloads 428322 Concrete Performance Evaluation of Coarse Aggregate Replacement by Civil Construction Waste
Authors: Juliane P. De Oliveira, Carlos H. Dos Santos, Marcia Shoji, Maria E. C. Ferreira, Natalia U. Yamaguchi
Abstract:
The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. Traces 50% and 100% obtained good results by comparing the actual specific mass, because the material used is lighter to the natural coarse aggregate. It was concluded that the concrete produced with recycled aggregates, even with inferior results, can be used where it is not needed a structural function, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources.Keywords: green concrete, recycled aggregate, recycling, sustainable development
Procedia PDF Downloads 153321 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers
Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr
Abstract:
This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement
Procedia PDF Downloads 170320 PM10 Concentration Emitted from Blasting and Crushing Processes of Limestone Mines in Saraburi Province, Thailand
Authors: Kanokrat Makkwao, Tassanee Prueksasit
Abstract:
This study aimed to investigate PM10 emitted from different limestone mines in Saraburi province, Thailand. The blasting and crushing were the main processes selected for PM10 sampling. PM10 was collected in two mines including, a limestone mine for cement manufacturing (mine A) and a limestone mine for construction (mine B). The IMPACT samplers were used to collect PM10. At blasting, the points aligning with the upwind and downwind direction were assigned for the sampling. The ranges of PM10 concentrations at mine A and B were 0.267-5.592 and 0.130-0.325 mg/m³, respectively, and the concentration at blasting from mine A was significantly higher than mine B (p < 0.05). During crushing at mine A, the PM10 concentration with the range of 1.153-3.716 and 0.085-1.724 mg/m³ at crusher and piles in respectively were observed whereas the PM10 concentration measured at four sampling points in mine B, including secondary crusher, tertiary crusher, screening point, and piles, were ranged 1.032-16.529, 10.957-74.057, 0.655-4.956, and 0.169-1.699 mg/m³, respectively. The emission of PM10 concentration at the crushing units was different in the ranges depending on types of machine, its operation, dust collection and control system, and environmental conditions.Keywords: PM₁₀ concentration, limestone mines, blasting, crushing
Procedia PDF Downloads 142319 Distribution and Segregation of Aerosols in Ambient Air
Authors: S. Ramteke, K. S. Patel
Abstract:
Aerosols are complex mixture of particulate matters (PM) inclusive of carbons, silica, elements, various salts, etc. Aerosols get deep into the human lungs and cause a broad range of health effects, in particular, respiratory and cardiovascular illnesses. They are one of the major culprits for the climate change. They are emitted by the high thermal processes i.e. vehicles, steel, sponge, cement, thermal power plants, etc. Raipur (22˚33'N to 21˚14'N and 82˚6'E) to 81˚38'E) is a growing industrial city in central India with population of two million. In this work, the distribution of inorganics (i.e. Cl⁻, NO³⁻, SO₄²⁻, NH₄⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) associated to the PM in the ambient air is described. The PM₁₀ in ambient air of Raipur city was collected for duration of one year (December 2014 - December 2015). The PM₁₀ was segregated into nine modes i.e. PM₁₀.₀₋₉.₀, PM₉.₀₋₅.₈, PM₅.₈₋₄.₇, PM₄.₇₋₃.₃, PM₃.₃₋₂.₁, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇, PM₀.₇₋₀.₄ and PM₀.₄ to know their emission sources and health hazards. The analysis of ions and metals was carried out by techniques i.e. ion chromatography and TXRF. The PM₁₀ concentration (n=48) was ranged from 100-450 µg/m³ with mean value of 73.57±20.82 µg/m³. The highest concentration of PM₄.₇₋₃.₃, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇ was observed in the commercial, residential and industrial area, respectively. The effect of meteorology i.e. temperature, humidity, wind speed and wind direction in the PM₁₀ and associated elemental concentration in the air is discussed.Keywords: ambient aerosol, ions, metals, segregation
Procedia PDF Downloads 200318 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 445317 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing
Procedia PDF Downloads 175316 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 229315 Assessment of Water Quality Based on Physico-Chemical and Microbiological Parameters in Batllava Lake, Case Study Kosovo
Authors: Albana Kashtanjeva-Bytyçi, Idriz Vehapi, Rifat Morina, Osman Fetoshi
Abstract:
The purpose of this study is to determine the water quality in Batllava Leka through which a part of the population of the Prishtina region is supplied with drinking water. Batllava Leka is a lake built in the 70s. This lake is located in the village of Btlava in the municipality of Podujeva, with coordinates 42 ° 49′33 ″ V 21 ° 18′25 ″ L, with an area of 3.07 km2. Water supply is from the river Brvenica- Batllavë. In order to take preventive measures and improve water quality, we have conducted periodic/monthly monitoring of water quality in Lake Batllava, through microbiological and physico-chemical indicators. The monitoring was carried out during the period December 2020 - December 2021. Samples were taken at three sampling sites: at the entrance of the lake, in the middle and at the overflow, on two levels, water surface and at a depth of 30 cm. The microbiological parameters analyzed are: total coliforms, fecal coliforms, fecal streptococci, aerobic mesophilic bacteria and actinomycetes. Within the physico-chemical parameters: Dissolved Oxygen, Saturation with O2, water temperature, pH value, electrical conductivity, total soluble matter, total suspended matter, turbidity, chemical oxygen demand, biochemical oxygen demand, total organic carbon, nitrate, total hardness, hardness of calcium, calcium, magnesium, ammonium ion, chloride, sulfates, flourine, M-alkalines, bicarbonates and heavy metals, such as: Fe, Pb, Mn, Cu, Cd. The results showed that most of the physico-chemical and microbiological parameters are within the limit allowed by the WHO, except in the case of the rainiest season that exceeded some parameters.Keywords: batllava lake, monitoring of water, physico-chemical, microbiological, heavy metals
Procedia PDF Downloads 108314 Enhancement of Critical Temperature and Improvement of Mechanical Properties of Yttrium Barium Copper Oxide Superconductor
Authors: Hamed Rahmati
Abstract:
Nowadays, increasing demand for electric energy makes applying high-temperature superconductors inevitable. However, the most important problem of the superconductors is their critical temperature, which necessitates using a cryogenic system for keeping these substances’ temperatures lower than the critical level. Cryogenic systems used for this reason are not efficient enough, and keeping these large systems maintained is costly. Moreover, the low critical temperature of superconductors has delayed using them in electrical equipment. In this article, at first, characteristics of three superconductors, magnesium diboride (MgB2), yttrium barium copper oxide (YBCO), and iron-based superconductors (FeSC), have been analyzed and a new structure of YBCO superconductors is presented. Generally, YBCO (YBa2Cu7O2) has a weak mechanical structure. By introducing some changes in its configuration and adding one silver atom (Ag) to it, its mechanical characteristics improved significantly. Moreover, for each added atom, a star-form structure was introduced in which changing the location of Ag atom led to considerable changes in temperature. In this study, Ag has been added by applying two accurate methods named random and substitute ones. The results of both methods have been examined. It has been shown that adding Ag by applying the substitute method can improve the mechanical properties of the superconductor in addition to increasing its critical temperature. In the mentioned strategy (using the substitute method), the critical temperature of the superconductor was measured up to 99 Kelvin. This new structure is usable in designing superconductors’ rings to be applied in superconducting magnetic energy storage (SMES). It can also lead to a reduction in the cryogenic system size, a decline in conductor wastes, and a decrease in costs of the whole system.Keywords: critical temperature, cryogenic system, high-temperature superconductors, YBCO
Procedia PDF Downloads 150313 Geophysical and Laboratory Evaluation of Aquifer Position, Aquifer Protective Capacity and Groundwater Quality in Selected Dumpsites in Calabar Municipal Local Government Area, South Eastern Nigeria
Authors: Egor Atan Obeten, Abong Augustine Agwul, Bissong A. Samson
Abstract:
The position of the aquifer, its protective capability, and the quality of the groundwater beneath the dumpsite were all investigated. The techniques employed were laboratory, tritium tagging, electrical resistivity tomography (ERT), and vertical electrical sounding (VES). With a maximum electrode spacing of 500 meters, fifteen VES stations were used, and IPI2win software was used to analyze the data collected. The resistivity map of the dumpsite was determined by deploying six ERT stations for the 2 D survey. To ascertain the degree of soil infiltration beneath the dumpsite, the tritium tagging method was used. Using a conventional laboratory procedure, groundwater samples were taken from neighboring boreholes and examined. The findings showed that there were three to five geoelectric layers, with the aquifer position being inferred to be between 24.2 and 75.1 meters deep in the third, fourth, and fifth levels. Siemens with values in the range of 0.0235 to 0.1908 for the load protection capacity were deemed to be, at most, weakly and badly protected. The obtained porosity values ranged from 44.45 to 89.75. Strong calculated values for transmissivity and porosity indicate a permeable aquifer system with considerable storativity. The area has an infiltration value between 8 and 22 percent, according to the results of the tritium tagging technique, which was used to evaluate the level of infiltration from the dumpsite. Groundwater samples that have been analyzed reveal levels of NO2, DO, Pb2+, magnesium, and cadmium that are higher than what the NSDWQ has approved. Overall analysis of the results from the above-described methodologies shows that the study area's aquifer system is porous and that contaminants will circulate through it quickly if they are contaminated.Keywords: aquifer, transmissivity, dumpsite, groundwater
Procedia PDF Downloads 47