Search results for: error estimate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3602

Search results for: error estimate

2792 Long-Term Otitis Media with Effusion and Related Hearing Loss and Its Impact on Developmental Outcomes

Authors: Aleema Rahman

Abstract:

Introduction: This study aims to estimate the prevalence of long-term otitis media with effusion (OME) and hearing loss in a prospective longitudinal cohort studyand to study the relationship between the condition and educational and psychosocial outcomes. Methods: Analysis of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) will be undertaken. ALSPAC is a longitudinal birth cohort study carried out in the UK, which has collected detailed measures of hearing on ~7000 children from the age of seven. A descriptive analysis of the data will be undertaken to estimate the prevalence of OME and hearing loss (defined as having average hearing levels > 20dB and type B tympanogram) at 7, 9, 11, and 15 years as well as that of long-term OME and hearing loss. Logistic and linear regression analyses will be conducted to examine associations between long-term OME and hearing loss and educational outcomes (grades obtained from standardised national attainment tests) and psychosocial outcomes such as anxiety, social fears, and depression at ages 10-11 and 15-16 years. Results: Results will be presented in terms of the prevalence of OME and hearing loss in the population at each age. The prevalence of long-term OME and hearing loss, defined as having OME and hearing loss at two or more time points, will also be reported. Furthermore, any associations between long-term OME and hearing loss and the educational and psychosocial outcomes will be presented. Analyses will take into account demographic factors such as sex and social deprivation and relevant confounders, including socioeconomic status, ethnicity, and IQ. Discussion: Findings from this study will provide new epidemiological information on the prevalence of long-term OME and hearing loss. The research will provide new knowledge on the impact of OME for the small group of children who do not grow out of condition by age 7 but continue to have hearing loss and need clinical care through later childhood. The study could have clinical implications and may influence service delivery for this group of children.

Keywords: educational attainment, hearing loss, otitis media with effusion, psychosocial development

Procedia PDF Downloads 137
2791 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 38
2790 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques

Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai

Abstract:

In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.

Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor

Procedia PDF Downloads 267
2789 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 145
2788 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 154
2787 Wearable Jacket for Game-Based Post-Stroke Arm Rehabilitation

Authors: A. Raj Kumar, A. Okunseinde, P. Raghavan, V. Kapila

Abstract:

Stroke is the leading cause of adult disability worldwide. With recent advances in immediate post-stroke care, there is an increasing number of young stroke survivors, under the age of 65 years. While most stroke survivors will regain the ability to walk, they often experience long-term arm and hand motor impairments. Long term upper limb rehabilitation is needed to restore movement and function, and prevent deterioration from complications such as learned non-use and learned bad-use. We have developed a novel virtual coach, a wearable instrumented rehabilitation jacket, to motivate individuals to participate in long-term skill re-learning, that can be personalized to their impairment profile. The jacket can estimate the movements of an individual’s arms using embedded off-the-shelf sensors (e.g., 9-DOF IMU for inertial measurements, flex-sensors for measuring angular orientation of fingers) and a Bluetooth Low Energy (BLE) powered microcontroller (e.g., RFduino) to non-intrusively extract data. The 9-DOF IMU sensors contain 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer to compute the quaternions, which are transmitted to a computer to compute the Euler angles and estimate the angular orientation of the arms. The data are used in a gaming environment to provide visual, and/or haptic feedback for goal-based, augmented-reality training to facilitate re-learning in a cost-effective, evidence-based manner. The full paper will elaborate the technical aspects of communication, interactive gaming environment, and physical aspects of electronics necessary to achieve our stated goal. Moreover, the paper will suggest methods to utilize the proposed system as a cheaper, portable, and versatile system vis-à-vis existing instrumentation to facilitate post-stroke personalized arm rehabilitation.

Keywords: feedback, gaming, Euler angles, rehabilitation, augmented reality

Procedia PDF Downloads 276
2786 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation

Authors: Othman Maklouf, Abdunnaser Tresh

Abstract:

Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.

Keywords: GPS, IMU, Kalman filter, materials engineering

Procedia PDF Downloads 417
2785 Development and Total Error Concept Validation of Common Analytical Method for Quantification of All Residual Solvents Present in Amino Acids by Gas Chromatography-Head Space

Authors: A. Ramachandra Reddy, V. Murugan, Prema Kumari

Abstract:

Residual solvents in Pharmaceutical samples are monitored using gas chromatography with headspace (GC-HS). Based on current regulatory and compendial requirements, measuring the residual solvents are mandatory for all release testing of active pharmaceutical ingredients (API). Generally, isopropyl alcohol is used as the residual solvent in proline and tryptophan; methanol in cysteine monohydrate hydrochloride, glycine, methionine and serine; ethanol in glycine and lysine monohydrate; acetic acid in methionine. In order to have a single method for determining these residual solvents (isopropyl alcohol, ethanol, methanol and acetic acid) in all these 7 amino acids a sensitive and simple method was developed by using gas chromatography headspace technique with flame ionization detection. During development, no reproducibility, retention time variation and bad peak shape of acetic acid peaks were identified due to the reaction of acetic acid with the stationary phase (cyanopropyl dimethyl polysiloxane phase) of column and dissociation of acetic acid with water (if diluent) while applying temperature gradient. Therefore, dimethyl sulfoxide was used as diluent to avoid these issues. But most the methods published for acetic acid quantification by GC-HS uses derivatisation technique to protect acetic acid. As per compendia, risk-based approach was selected as appropriate to determine the degree and extent of the validation process to assure the fitness of the procedure. Therefore, Total error concept was selected to validate the analytical procedure. An accuracy profile of ±40% was selected for lower level (quantitation limit level) and for other levels ±30% with 95% confidence interval (risk profile 5%). The method was developed using DB-Waxetr column manufactured by Agilent contains 530 µm internal diameter, thickness: 2.0 µm, and length: 30 m. A constant flow of 6.0 mL/min. with constant make up mode of Helium gas was selected as a carrier gas. The present method is simple, rapid, and accurate, which is suitable for rapid analysis of isopropyl alcohol, ethanol, methanol and acetic acid in amino acids. The range of the method for isopropyl alcohol is 50ppm to 200ppm, ethanol is 50ppm to 3000ppm, methanol is 50ppm to 400ppm and acetic acid 100ppm to 400ppm, which covers the specification limits provided in European pharmacopeia. The accuracy profile and risk profile generated as part of validation were found to be satisfactory. Therefore, this method can be used for testing of residual solvents in amino acids drug substances.

Keywords: amino acid, head space, gas chromatography, total error

Procedia PDF Downloads 147
2784 Gnss Aided Photogrammetry for Digital Mapping

Authors: Muhammad Usman Akram

Abstract:

This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.

Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry

Procedia PDF Downloads 29
2783 A Single Loop Repetitive Controller for a Four Legs Matrix Converter Unit

Authors: Wesam Rohouma

Abstract:

The aim of this paper is to investigate the use of repetitive controller to regulate the output voltage of three phase four leg matric converter for an Aircraft Ground Power Supply Unit. The proposed controller improve the steady state error and provide good regulation during different loading. Simulation results of 7.5 KW converter are presented to verify the operation of the proposed controller.

Keywords: matrix converter, Power electronics, controller, regulation

Procedia PDF Downloads 1503
2782 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 195
2781 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 36
2780 An Experiment Research on the Effect of Brain-Break in the Classroom on Elementary School Students’ Selective Attention

Authors: Hui Liu, Xiaozan Wang, Jiarong Zhong, Ziming Shao

Abstract:

Introduction: Related research shows that students don’t concentrate on teacher’s speaking in the classroom. The d2 attention test is a time-limited test about selective attention. The d2 attention test can be used to evaluate individual selective attention. Purpose: To use the d2 attention test tool to measure the difference between the attention level of the experimental class and the control class before and after Brain-Break and to explore the effect of Brain-Break in the classroom on students' selective attention. Methods: According to the principle of no difference in pre-test data, two classes in the fourth- grade of Shenzhen Longhua Central Primary School were selected. After 20 minutes of class in the third class in the morning and the third class in the afternoon, about 3-minute Brain-Break intervention was performed in the experimental class for 10 weeks. The normal class in the control class did not intervene. Before and after the experiment, the d2 attention test tool was used to test the attention level of the two-class students. The paired sample t-test and independent sample t-test in SPSS 23.0 was used to test the change in the attention level of the two-class classes around 10 weeks. This article only presents results with significant differences. Results: The independent sample t-test results showed that after ten-week of Brain-Break, the missed errors (E1 t = -2.165 p = 0.042), concentration performance (CP t = 1.866 p = 0.05), and the degree of omissions (Epercent t = -2.375 p = 0.029) in experimental class showed significant differences compared with control class. The students’ error level decreased and the concentration increased. Conclusions: Adding Brain-Break interventions in the classroom can effectively improve the attention level of fourth-grade primary school students to a certain extent, especially can improve the concentration of attention and decrease the error rate in the tasks. The new sport's learning model is worth promoting

Keywords: cultural class, micromotor, attention, D2 test

Procedia PDF Downloads 131
2779 Protocol for Consumer Research in Academia for Community Marketing Campaigns

Authors: Agnes J. Otjen, Sarah Keller

Abstract:

A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.

Keywords: consumer, research, marketing, communications

Procedia PDF Downloads 136
2778 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 150
2777 Rough Oscillatory Singular Integrals on Rⁿ

Authors: H. M. Al-Qassem, L. Cheng, Y. Pan

Abstract:

In this paper we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log(deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Among key ingredients of our methods are an L¹→L² estimate and extrapolation.

Keywords: oscillatory singular integral, rough kernel, singular integral, Orlicz spaces, Block spaces, extrapolation, L^{p} boundedness

Procedia PDF Downloads 355
2776 A Simple Approach to Establish Urban Energy Consumption Map Using the Combination of LiDAR and Thermal Image

Authors: Yu-Cheng Chen, Tzu-Ping Lin, Feng-Yi Lin, Chih-Yu Chen

Abstract:

Due to the urban heat island effect caused by highly development of city, the heat stress increased in recent year rapidly. Resulting in a sharp raise of the energy used in urban area. The heat stress during summer time exacerbated the usage of air conditioning and electric equipment, which caused more energy consumption and anthropogenic heat. Therefore, an accurate and simple method to measure energy used in urban area can be helpful for the architectures and urban planners to develop better energy efficiency goals. This research applies the combination of airborne LiDAR data and thermal imager to provide an innovate method to estimate energy consumption. Owing to the high resolution of remote sensing data, the accurate current volume and total floor area and the surface temperature of building derived from LiDAR and thermal imager can be herein obtained to predict energy used. In the estimate process, the LiDAR data will be divided into four type of land cover which including building, road, vegetation, and other obstacles. In this study, the points belong to building were selected to overlay with the land use information; therefore, the energy consumption can be estimated precisely with the real value of total floor area and energy use index for different use of building. After validating with the real energy used data from the government, the result shows the higher building in high development area like commercial district will present in higher energy consumption, caused by the large quantity of total floor area and more anthropogenic heat. Furthermore, because of the surface temperature can be warm up by electric equipment used, this study also applies the thermal image of building to find the hot spots of energy used and make the estimation method more complete.

Keywords: urban heat island, urban planning, LiDAR, thermal imager, energy consumption

Procedia PDF Downloads 238
2775 A Location-Based Search Approach According to Users’ Application Scenario

Authors: Shih-Ting Yang, Chih-Yun Lin, Ming-Yu Li, Jhong-Ting Syue, Wei-Ming Huang

Abstract:

Global positioning system (GPS) has become increasing precise in recent years, and the location-based service (LBS) has developed rapidly. Take the example of finding a parking lot (such as Parking apps). The location-based service can offer immediate information about a nearby parking lot, including the information about remaining parking spaces. However, it cannot provide expected search results according to the requirement situations of users. For that reason, this paper develops a “Location-based Search Approach according to Users’ Application Scenario” according to the location-based search and demand determination to help users obtain the information consistent with their requirements. The “Location-based Search Approach based on Users’ Application Scenario” of this paper consists of one mechanism and three kernel modules. First, in the Information Pre-processing Mechanism (IPM), this paper uses the cosine theorem to categorize the locations of users. Then, in the Information Category Evaluation Module (ICEM), the kNN (k-Nearest Neighbor) is employed to classify the browsing records of users. After that, in the Information Volume Level Determination Module (IVLDM), this paper makes a comparison between the number of users’ clicking the information at different locations and the average number of users’ clicking the information at a specific location, so as to evaluate the urgency of demand; then, the two-dimensional space is used to estimate the application situations of users. For the last step, in the Location-based Search Module (LBSM), this paper compares all search results and the average number of characters of the search results, categorizes the search results with the Manhattan Distance, and selects the results according to the application scenario of users. Additionally, this paper develops a Web-based system according to the methodology to demonstrate practical application of this paper. The application scenario-based estimate and the location-based search are used to evaluate the type and abundance of the information expected by the public at specific location, so that information demanders can obtain the information consistent with their application situations at specific location.

Keywords: data mining, knowledge management, location-based service, user application scenario

Procedia PDF Downloads 123
2774 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River

Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán

Abstract:

Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.

Keywords: microplastics, pollution, sediments, Tena River

Procedia PDF Downloads 71
2773 Nutrition Budgets in Uganda: Research to Inform Implementation

Authors: Alexis D'Agostino, Amanda Pomeroy

Abstract:

Background: Resource availability is essential to effective implementation of national nutrition policies. To this end, the SPRING Project has collected and analyzed budget data from government ministries in Uganda, international donors, and other nutrition implementers to provide data for the first time on what funding is actually allocated to implement nutrition activities named in the national nutrition plan. Methodology: USAID’s SPRING Project used the Uganda Nutrition Action Plan (UNAP) as the starting point for budget analysis. Thorough desk reviews of public budgets from government, donors, and NGOs were mapped to activities named in the UNAP and validated by key informants (KIs) across the stakeholder groups. By relying on nationally-recognized and locally-created documents, SPRING provided a familiar basis for discussions to increase credibility and local ownership of findings. Among other things, the KIs validated the amount, source, and type (specific or sensitive) of funding. When only high-level budget data were available, KIs provided rough estimates of the percentage of allocations that were actually nutrition-relevant, allowing creation of confidence intervals around some funding estimates. Results: After validating data and narrowing in on estimates of funding to nutrition-relevant programming, researchers applied a formula to estimate overall nutrition allocations. In line with guidance by the SUN Movement and its three-step process, nutrition-specific funding was counted at 100% of its allocation amount, while nutrition sensitive funding was counted at 25%. The vast majority of nutrition funding in Uganda is off-budget, with over 90 percent of all nutrition funding is provided outside of the government system. Overall allocations are split nearly evenly between nutrition-specific and –sensitive activities. In FY 2013/14, the two-year study’s baseline year, on- and off-budget funding for nutrition was estimated to be around 60 million USD. While the 60 million USD allocations compare favorably to the 66 million USD estimate of the cost of the UNAP, not all activities are sufficiently funded. Those activities with a focus on behavior change were the most underfunded. In addition, accompanying qualitative research suggested that donor funding for nutrition activities may shift government funding into other areas of work, making it difficult to estimate the sustainability of current nutrition investments.Conclusions: Beyond providing figures, these estimates can be used together with the qualitative results of the study to explain how and why these amounts were allocated for particular activities and not others, examine the negotiation process that occurred, and suggest options for improving the flow of finances to UNAP activities for the remainder of the policy tenure. By the end of the PBN study, several years of nutrition budget estimates will be available to compare changes in funding over time. Halfway through SPRING’s work, there is evidence that country stakeholders have begun to feel ownership over the ultimate findings and some ministries are requesting increased technical assistance in nutrition budgeting. Ultimately, these data can be used within organization to advocate for more and improved nutrition funding and to improve targeting of nutrition allocations.

Keywords: budget, nutrition, financing, scale-up

Procedia PDF Downloads 443
2772 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 54
2771 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System

Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov

Abstract:

Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.

Keywords: modeling, errors, probability, biometrics, neural network, authentication

Procedia PDF Downloads 481
2770 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units

Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu

Abstract:

There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.

Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor

Procedia PDF Downloads 182
2769 Stress Evaluation at Lower Extremity during Walking with Unstable Shoe

Authors: Sangbaek Park, Seungju Lee, Soo-Won Chae

Abstract:

Unstable shoes are known to strengthen lower extremity muscles and improve gait ability and to change the user’s gait pattern. The change in gait pattern affects human body enormously because the walking is repetitive and steady locomotion in daily life. It is possible to estimate the joint motion including joint moment, force and inertia effect using kinematic and kinetic analysis. However, the change of internal stress at the articular cartilage has not been possible to estimate. The purpose of this research is to evaluate the internal stress of human body during gait with unstable shoes. In this study, FE analysis was combined with motion capture experiment to obtain the boundary condition and loading condition during walking. Motion capture experiments were performed with a participant during walking with normal shoes and with unstable shoes. Inverse kinematics and inverse kinetic analysis was performed with OpenSim. The joint angle and muscle forces were estimated as results of inverse kinematics and kinetics analysis. A detailed finite element (FE) lower extremity model was constructed. The joint coordinate system was added to the FE model and the joint coordinate system was coincided with OpenSim model’s coordinate system. Finally, the joint angles at each phase of gait were used to transform the FE model’s posture according to actual posture from motion capture. The FE model was transformed into the postures of three major phases (1st peak of ground reaction force, mid stance and 2nd peak of ground reaction force). The direction and magnitude of muscle force were estimated by OpenSim and were applied to the FE model’s attachment point of each muscle. Then FE analysis was performed to compare the stress at knee cartilage during gait with normal shoes and unstable shoes.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 321
2768 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution

Authors: Rafid Saeed Abdulrazak Alshkaki

Abstract:

In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.

Keywords: zero one inflated models, negative binomial distribution, moments estimator, non negative integer sampling

Procedia PDF Downloads 292
2767 Real-World Economic Burden of Musculoskeletal Disorders in Nigeria

Authors: F. Fatoye, C. E. Mbada, T. Gebrye, A. O. Ogunsola, C. Fatoye, O. Oyewole

Abstract:

Musculoskeletal disorders (MSDs) such as low back pain (LBP), cervical spondylosis (CSPD), sprain, osteoarthritis (OA), and post immobilization stiffness (PIS) have a major impact on individuals, health systems and society in terms of morbidity, long-term disability, and economics. This study estimated the direct and indirect costs of common MSDs in Osun State, Nigeria. A review of medical charts for adult patients attending Physiotherapy Outpatient Clinic at the Obafemi Awolowo University Teaching Hospitals Complex, Osun State, Nigeria between 2009 and 2018 was carried out. The occupational class of the patients was determined using the International Labour Classification (ILO). The direct and indirect costs were estimated using a cost-of-illness approach. Physiotherapy related health resource use, and costs of the common MSDs, including consultation fee, total fee charge per session, costs of consumables were estimated. Data were summarised using descriptive statistics mean and standard deviation (SD). Overall, 1582 (Male = 47.5%, Female = 52.5%) patients with MSDs population with a mean age of 47.8 ± 25.7 years participated in this study. The mean (SD) direct costs estimate for LBP, CSPD, PIS, sprain, OA, and other conditions were $18.35 ($17.33), $34.76 ($17.33), $32.13 ($28.37), $35.14 ($44.16), $37.19 ($41.68), and $15.74 ($13.96), respectively. The mean (SD) indirect costs estimate of LBP, CSPD, PIS, sprain, OA, and other MSD conditions were $73.42 ($43.54), $140.57 ($69.31), $128.52 ($113.46), sprain $140.57 ($69.31), $148.77 ($166.71), and $62.98 ($55.84), respectively. Musculoskeletal disorders contribute a substantial economic burden to individuals with the condition and society. The unacceptable economic loss of MSDs should be reduced using appropriate strategies. Further research is required to determine the clinical and cost effectiveness of strategies to improve health outcomes of patients with MSDs. The findings of the present study may assist health policy and decision makers to understand the economic burden of MSDs and facilitate efficient allocation of healthcare resources to alleviate the burden associated with these conditions in Nigeria.

Keywords: economic burden, low back pain, musculoskeletal disorders, real-world

Procedia PDF Downloads 219
2766 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling

Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna

Abstract:

The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.

Keywords: piers, scouring, HEC-RAS, physical model

Procedia PDF Downloads 13
2765 Orbit Determination from Two Position Vectors Using Finite Difference Method

Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.

Abstract:

An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.

Keywords: finite difference method, grid generation, NavIC system, orbit perturbation

Procedia PDF Downloads 82
2764 Estimation of Physico-Mechanical Properties of Tuffs (Turkey) from Indirect Methods

Authors: Mustafa GOK1, Sair Kahraman2, Mustafa FENER3

Abstract:

In rock engineering applications, determining uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and basic index properties such as density, porosity, and water absorption is crucial for the design of both underground and surface structures. However, obtaining reliable samples for direct testing, especially from rocks that weather quickly and have low strength, is often challenging. In such cases, indirect methods provide a practical alternative to estimate the physical and mechanical properties of these rocks. In this study, tuff samples collected from the Cappadocia region (Nevşehir) in Turkey were subjected to indirect testing methods. Over 100 tests were conducted, using needle penetrometer index (NPI), point load strength index (PLI), and disc shear index (BPI) to estimate the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), density, and water absorption index of the tuffs. The relationships between the results of these indirect tests and the target physical properties were evaluated using simple and multiple regression analyses. The findings of this research reveal strong correlations between the indirect methods and the mechanical properties of the tuffs. Both uniaxial compressive strength and Brazilian tensile strength could be accurately predicted using NPI, PLI, and BPI values. The regression models developed in this study allow for rapid, cost-effective assessments of tuff strength in cases where direct testing is impractical. These results are particularly valuable for geological engineering applications, where time and resource constraints exist. This study highlights the significance of using indirect methods as reliable predictors of the mechanical behavior of weak rocks like tuffs. Further research is recommended to explore the application of these methods to other rock types with similar characteristics. Further research is required to compare the results with those of established direct test methods.

Keywords: brazilian tensile strength, disc shear strength, indirect methods, tuffs, uniaxial compressive strength

Procedia PDF Downloads 13
2763 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises

Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov

Abstract:

We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.

Keywords: mathematical expectation, filtration, anomalous noise, memory

Procedia PDF Downloads 245