Search results for: entropy coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2535

Search results for: entropy coefficient

1725 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings

Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier

Abstract:

Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.

Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests

Procedia PDF Downloads 203
1724 Aerosol - Cloud Interaction with Summer Precipitation over Major Cities in Eritrea

Authors: Samuel Abraham Berhane, Lingbing Bu

Abstract:

This paper presents the spatiotemporal variability of aerosols, clouds, and precipitation within the major cities in Eritrea and it investigates the relationship between aerosols, clouds, and precipitation concerning the presence of aerosols over the study region. In Eritrea, inadequate water supplies will have both direct and indirect adverse impacts on sustainable development in areas such as health, agriculture, energy, communication, and transport. Besides, there exists a gap in the knowledge on suitable and potential areas for cloud seeding. Further, the inadequate understanding of aerosol-cloud-precipitation (ACP) interactions limits the success of weather modification aimed at improving freshwater sources, storage, and recycling. Spatiotemporal variability of aerosols, clouds, and precipitation involve spatial and time series analysis based on trend and anomaly analysis. To find the relationship between aerosols and clouds, a correlation coefficient is used. The spatiotemporal analysis showed larger variations of aerosols within the last two decades, especially in Assab, indicating that aerosol optical depth (AOD) has increased over the surrounding Red Sea region. Rainfall was significantly low but AOD was significantly high during the 2011 monsoon season. Precipitation was high during 2007 over most parts of Eritrea. The correlation coefficient between AOD and rainfall was negative over Asmara and Nakfa. Cloud effective radius (CER) and cloud optical thickness (COT) exhibited a negative correlation with AOD over Nakfa within the June–July–August (JJA) season. The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model that is used to find the path and origin of the air mass of the study region showed that the majority of aerosols made their way to the study region via the westerly and the southwesterly winds.

Keywords: aerosol-cloud-precipitation, aerosol optical depth, cloud effective radius, cloud optical thickness, HYSPLIT

Procedia PDF Downloads 127
1723 Determinants of Success of University Industry Collaboration in the Science Academic Units at Makerere University

Authors: Mukisa Simon Peter Turker, Etomaru Irene

Abstract:

This study examined factors determining the success of University-Industry Collaboration (UIC) in the science academic units (SAUs) at Makerere University. This was prompted by concerns about weak linkages between industry and the academic units at Makerere University. The study examined institutional, relational, output, and framework factors determining the success of UIC in the science academic units at Makerere University. The study adopted a predictive cross-sectional survey design. Data was collected using a questionnaire survey from 172 academic staff from the six SAUs at Makerere University. Stratified, proportionate, and simple random sampling techniques were used to select the samples. The study used descriptive statistics and linear multiple regression analysis to analyze data. The study findings reveal a coefficient of determination (R-square) of 0.403 at a significance level of 0.000, suggesting that UIC success was 40.3% at a standardized error of estimate of 0.60188. The strength of association between Institutional factors, Relational factors, Output factors, and Framework factors, taking into consideration all interactions among the study variables, was at 64% (R= 0.635). Institutional, Relational, Output and Framework factors accounted for 34% of the variance in the level of UIC success (adjusted R2 = 0.338). The remaining variance of 66% is explained by factors other than Institutional, Relational, Output, and Framework factors. The standardized coefficient statistics revealed that Relational factors (β = 0.454, t = 5.247, p = 0.000) and Framework factors (β = 0.311, t = 3.770, p = 0.000) are the only statistically significant determinants of the success of UIC in the SAU in Makerere University. Output factors (β = 0.082, t =1.096, p = 0.275) and Institutional factors β = 0.023, t = 0.292, p = 0.771) turned out to be statistically insignificant determinants of the success of UIC in the science academic units at Makerere University. The study concludes that Relational Factors and Framework Factors positively and significantly determine the success of UIC, but output factors and institutional factors are not statistically significant determinants of UIC in the SAUs at Makerere University. The study recommends strategies to consolidate Relational and Framework Factors to enhance UIC at Makerere University and further research on the effects of Institutional and Output factors on the success of UIC in universities.

Keywords: university-industry collaboration, output factors, relational factors, framework factors, institutional factors

Procedia PDF Downloads 54
1722 Model for Calculating Traffic Mass and Deceleration Delays Based on Traffic Field Theory

Authors: Liu Canqi, Zeng Junsheng

Abstract:

This study identifies two typical bottlenecks that occur when a vehicle cannot change lanes: car following and car stopping. The ideas of traffic field and traffic mass are presented in this work. When there are other vehicles in front of the target vehicle within a particular distance, a force is created that affects the target vehicle's driving speed. The characteristics of the driver and the vehicle collectively determine the traffic mass; the driving speed of the vehicle and external variables have no bearing on this. From a physical level, this study examines the vehicle's bottleneck when following a car, identifies the outside factors that have an impact on how it drives, takes into account that the vehicle will transform kinetic energy into potential energy during deceleration, and builds a calculation model for traffic mass. The energy-time conversion coefficient is created from an economic standpoint utilizing the social average wage level and the average cost of motor fuel. Vissim simulation program measures the vehicle's deceleration distance and delays under the Wiedemann car-following model. The difference between the measured value of deceleration delay acquired by simulation and the theoretical value calculated by the model is compared using the conversion calculation model of traffic mass and deceleration delay. The experimental data demonstrate that the model is reliable since the error rate between the theoretical calculation value of the deceleration delay obtained by the model and the measured value of simulation results is less than 10%. The article's conclusion is that the traffic field has an impact on moving cars on the road and that physical and socioeconomic factors should be taken into account while studying vehicle-following behavior. The deceleration delay value of a vehicle's driving and traffic mass have a socioeconomic relationship that can be utilized to calculate the energy-time conversion coefficient when dealing with the bottleneck of cars stopping and starting.

Keywords: traffic field, social economics, traffic mass, bottleneck, deceleration delay

Procedia PDF Downloads 59
1721 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 483
1720 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 416
1719 Nonlinear Analysis of Postural Sway in Multiple Sclerosis

Authors: Hua Cao, Laurent Peyrodie, Olivier Agnani, Cecile Donze

Abstract:

Multiple sclerosis (MS) is a disease, which affects the central nervous system, and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. Forty volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and two types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data.

Keywords: balance, multiple sclerosis, nonlinear analysis, postural sway

Procedia PDF Downloads 330
1718 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies

Authors: Abeer S. Elsherbiny, Ali H. Gemeay

Abstract:

In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.

Keywords: adsorption, graphene oxide, kinetics, malachite green

Procedia PDF Downloads 402
1717 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 387
1716 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: separation, activity coefficients, methyltrioctylammonium chloride, ionic liquid, capacity

Procedia PDF Downloads 141
1715 Cluster Analysis of Students’ Learning Satisfaction

Authors: Purevdolgor Luvsantseren, Ajnai Luvsan-Ish, Oyuntsetseg Sandag, Javzmaa Tsend, Akhit Tileubai, Baasandorj Chilhaasuren, Jargalbat Puntsagdash, Galbadrakh Chuluunbaatar

Abstract:

One of the indicators of the quality of university services is student satisfaction. Aim: We aimed to study the level of satisfaction of students in the first year of premedical courses in the course of Medical Physics using the cluster method. Materials and Methods: In the framework of this goal, a questionnaire was collected from a total of 324 students who studied the medical physics course of the 1st course of the premedical course at the Mongolian National University of Medical Sciences. When determining the level of satisfaction, the answers were obtained on five levels of satisfaction: "excellent", "good", "medium", "bad" and "very bad". A total of 39 questionnaires were collected from students: 8 for course evaluation, 19 for teacher evaluation, and 12 for student evaluation. From the research, a database with 39 fields and 324 records was created. Results: In this database, cluster analysis was performed in MATLAB and R programs using the k-means method of data mining. Calculated the Hopkins statistic in the created database, the values are 0.88, 0.87, and 0.97. This shows that cluster analysis methods can be used. The course evaluation sub-fund is divided into three clusters. Among them, cluster I has 150 objects with a "good" rating of 46.2%, cluster II has 119 objects with a "medium" rating of 36.7%, and Cluster III has 54 objects with a "good" rating of 16.6%. The teacher evaluation sub-base into three clusters, there are 179 objects with a "good" rating of 55.2% in cluster II, 108 objects with an "average" rating of 33.3% in cluster III, and 36 objects with an "excellent" rating in cluster I of 11.1%. The sub-base of student evaluations is divided into two clusters: cluster II has 215 objects with an "excellent" rating of 66.3%, and cluster I has 108 objects with an "excellent" rating of 33.3%. Evaluating the resulting clusters with the Silhouette coefficient, 0.32 for the course evaluation cluster, 0.31 for the teacher evaluation cluster, and 0.30 for student evaluation show statistical significance. Conclusion: Finally, to conclude, cluster analysis in the model of the medical physics lesson “good” - 46.2%, “middle” - 36.7%, “bad” - 16.6%; 55.2% - “good”, 33.3% - “middle”, 11.1% - “bad” in the teacher evaluation model; 66.3% - “good” and 33.3% of “bad” in the student evaluation model.

Keywords: questionnaire, data mining, k-means method, silhouette coefficient

Procedia PDF Downloads 41
1714 Gender Based Variability Time Series Complexity Analysis

Authors: Ramesh K. Sunkaria, Puneeta Marwaha

Abstract:

Nonlinear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy Normal Sinus Rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.

Keywords: heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy

Procedia PDF Downloads 278
1713 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study

Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura

Abstract:

Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.

Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia

Procedia PDF Downloads 127
1712 Identify the Factors Affecting Employment and Prioritize in the Economic Sector Jobs of Increased Employment MADM approach of using SAW and TOPSIS and POSET: Ministry of Cooperatives, Do Varamin City Social Welfare

Authors: Mina Rahmani Pour

Abstract:

Negative consequences of unemployment are: increasing age at marriage, addiction, depression, drug trafficking, divorce, immigration, elite, frustration, delinquency, theft, murder, etc., has led to addressing the issue of employment by economic planners, public authorities, chief executive economic conditions in different countries and different time is important. All countries are faced with the problem of unemployment. By identifying the influential factors of occupational employment and employing strengths in the basic steps can be taken to reduce unemployment. In this study, the most significant factors affecting employment has identified 12 variables based on interviews conducted Choose Vtasyrafzaysh engaged in three main business is discussed. DRGAM next question the 8 expert ministry to respond to it is distributed and for weight Horns AZFN Shannon entropy and the ranking criteria of the (SAW, TOPSIS) used. According to the results of the above methods are not compatible with each other, to reach a general consensus on the rating criteria of the technique of integrating (POSET) involving average, Borda, copeland is used. Ultimately, there is no difference between the employments in the economic sector jobs of increased employment.

Keywords: employment, effective techniques, SAW, TOPSIS

Procedia PDF Downloads 229
1711 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures

Authors: Daniel Dahis, Haim Azhari

Abstract:

Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.

Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature

Procedia PDF Downloads 159
1710 Ix Operation for the Concentration of Low-Grade Uranium Leach Solution

Authors: Heba Ahmed Nawafleh

Abstract:

In this study, two commercial resins were evaluated to concentrate uranium from real solutions that were produced from analkaline leaching process of carbonate deposits. The adsorption was examined using a batch process. Different parameters were evaluated, including initial pH, contact time, temperature, adsorbent dose, and finally, uranium initial concentration. Both resins were effective and selective for uranium ions from the tested leaching solution. The adsorption isotherms data were well fitted for both resins using the Langmuir model. Thermodynamic functions (Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS) were calculated for the adsorption of uranium. The result shows that the adsorption process is endothermic, spontaneous, and chemisorption processes took place for both resins. The kinetic studies showed that the equilibrium time for uranium ions is about two hours, where the maximum uptake levels were achieved. The kinetics studies were carried out for the adsorption of U ions, and the data was found to follow pseudo-second-order kinetics, which indicates that the adsorption of U ions was chemically controlled. In addition, the reusability (adsorption/ desorption) process was tested for both resins for five cycles, these adsorbents maintained removal efficiency close to first cycle efficiency of about 91% and 80%.

Keywords: uranium, adsorption, ion exchange, thermodynamic and kinetic studies

Procedia PDF Downloads 88
1709 Sorption of Crystal Violet from Aqueous Solution Using Chitosan−Charcoal Composite

Authors: Kingsley Izuagbe Ikeke, Abayomi O. Adetuyi

Abstract:

The study investigated the removal efficiency of crystal violet from aqueous solution using chitosan-charcoal composite as adsorbent. Deproteination was carried out by placing 200g of powdered snail shell in 4% w/v NaOH for 2hours. The sample was then placed in 1% HCl for 24 hours to remove CaCO3. Deacetylation was done by boiling in 50% NaOH for 2hours. 10% Oxalic acid was used to dissolve the chitosan before mixing with charcoal at 55°C to form the composite. The composite was characterized by Fourier Transform Infra-Red and Scanning Electron Microscopy measurements. The efficiency of adsorption was evaluated by varying pH of the solution, contact time, initial concentration and adsorbent dose. Maximum removal of crystal violet by composite and activated charcoal was attained at pH10 while maximum removal of crystal violet by chitosan was achieved at pH 8. The results showed that adsorption of both dyes followed the pseudo-second-order rate equation and fit the Langmuir and Freundlich isotherms. The data showed that composite was best suited for crystal violet removal and also did relatively well in the removal of alizarin red. Thermodynamic parameters such as enthalpy change (ΔHº), free energy change (ΔGº) and entropy change (ΔSº) indicate that adsorption process of Crystal Violet was endothermic, spontaneous and feasible respectively.

Keywords: crystal violet, chitosan−charcoal composite, extraction process, sorption

Procedia PDF Downloads 430
1708 Enhanced Biosorption of Copper Ions by Luffa Cylindrica: Biosorbent Characterization and Batch Experiments

Authors: Nouacer Imane, Benalia Mokhtar, Djedid Mabrouk

Abstract:

The adsorption ability of a powdered activated carbons (PAC) derived from Luffa cylindrica investigated in an attempt to produce more economic and effective sorbents for the control of Cu(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local luffa cylindrica, were prepared by chemical activation methods using ZnCl2 as activating reagents. Adsorption of Cu (II) from aqueous solutions was investigated. The effects of pH, initial adsorbent concentration, the effect of particle size, initial metal ion concentration and temperature were studied in batch experiments. The maximum adsorption capacity of copper onto grafted Luffa cylindrica fiber was found to be 14.23 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ∆H (-0.823 kJ/mol), entropy change, ∆S (-9.35 J/molK) and free energy change, ∆G (−1.56 kJ/mol) were also calculated. Adsorption process was found spontaneous and exothermic in nature. Finally, the luffa cylindrica has been evaluated by FTIR, MO and x-ray diffraction in order to determine if the biosorption process modifies its chemical structure and morphology, respectively. Luffa cylindrica has been proven to be an efficient biomaterial useful for heavy metal separation purposes that is not altered by the process.

Keywords: adsorption, cadmium, isotherms, thermodynamic, luffa sponge

Procedia PDF Downloads 246
1707 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis

Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv

Abstract:

Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.

Keywords: correlation analysis, hierarchical filtering, multisource data, network security

Procedia PDF Downloads 196
1706 Sustainable Approach for Strategic Planning of Construction of Buildings using Multi-Criteria Decision Making Tools

Authors: Kishor Bhagwat, Gayatri Vyas

Abstract:

Construction industry is earmarked with complex processes depending on the nature and scope of the project. In recent years, developments in this sector are remarkable and have resulted in both positive and negative impacts on the environment and human being. Sustainable construction can be looked upon as one of the solution to overcome the negative impacts since sustainable construction is a vast concept, which includes many parameters, and sometimes the use of multi-criteria decision making [MCDM] tools becomes necessary. The main objective of this study is to determine the weightage of sustainable building parameters with the help of MCDM tools. Questionnaire survey was conducted to examine the perspective of respondents on the importance of weights of the criterion, and the respondents were architects, green building consultants, and civil engineers. This paper presents an overview of research related to Indian and international green building rating systems and MCDM. The results depict that economy, environmental health, and safety, site selection, climatic condition, etc., are important parameters in sustainable construction.

Keywords: green building, sustainability, multi-criteria decision making method [MCDM], analytical hierarchy process [AHP], technique for order preference by similarity to an ideal solution [TOPSIS], entropy

Procedia PDF Downloads 92
1705 Contribution of Football Club Jerseys towards English Premier League Fans’ Loyalty in Nigeria

Authors: B. O. Diyaolu

Abstract:

The globalization of football especially among youth over the decade is uprising. Nigeria youth displaying football jerseys at every opportunity is an acceptance of football globalization. The Love for English Premier League (EPL) football jersey is very strong among Nigeria fans. Football club jerseys of the EPL are a common sports product among fans in Nigeria. This study investigates the contribution of football club jerseys towards EPL fans’ loyalty in Nigeria. Descriptive survey research design was used for the study. The population consists of EPL fans in Nigeria. Simple random sampling technique (fish bowl without replacement) was used to select two states from the six geo-political zones. Purposive sampling technique was used to pick eight viewing centres while accidental sampling technique was used to pick five vendor stands from each State. An average of 250 respondents was selected from each state. A total of 3,200 respondents participated in the research. Two research instruments were used. A self-developed structured questionnaire on Football Jersey Scale (FJS): The instrument consists of 10 items. Fans Loyalty Scale (FLS): The instrument was modified from the psychological commitment to team (PCT) scale, and consists of 20 items. The Cronbach’s Alpha reliability coefficient of 0.72 and 0.75 was obtained, respectively. The hypothesis was tested at 0.05 significant levels. Data were analysed using frequency, percentages count, pie chart and multiple regressions. The result showed that the b-value of football club jersey is 0.148 also the standard regression coefficient (Beta) is 0.089. The t = 4.759 is statistically significant at p = 0.000. This signified a relative contribution of football club jersey on EPL fans loyalty in Nigeria. Club jersey, which is the most outstanding identifier of every club, was found to significantly predict loyalty. The jersey on the body of the fan has become the site for a declaration of loyalty which becomes available for social interaction and negotiation. The Nigerian local league clubs in an attempt to keep Nigerian fans loyal must borrow a leaf from their European counterparts.

Keywords: club Jerseys, English Premier League, football fans, Nigeria youth

Procedia PDF Downloads 248
1704 Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater

Authors: Liu Bijin

Abstract:

Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests.

Keywords: floating breakwater, wave dissipation performance, transmittance coefficient, model test

Procedia PDF Downloads 48
1703 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm

Procedia PDF Downloads 108
1702 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 88
1701 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients

Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari

Abstract:

The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.

Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation

Procedia PDF Downloads 77
1700 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis

Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu

Abstract:

Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.

Keywords: GPT, phantom-less QCT, large language model, osteoporosis

Procedia PDF Downloads 64
1699 Fully Coupled Porous Media Model

Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li

Abstract:

This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.

Keywords: coupled, implicit, monolithic, porous media

Procedia PDF Downloads 136
1698 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City

Authors: Emejeamara Francis

Abstract:

The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.

Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content

Procedia PDF Downloads 271
1697 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: darrieus wind turbine, VAWT, NACA airfoil, performance

Procedia PDF Downloads 363
1696 Creation of S-Box in Blowfish Using AES

Authors: C. Rekha, G. N. Krishnamurthy

Abstract:

This paper attempts to develop a different approach for key scheduling algorithm which uses both Blowfish and AES algorithms. The main drawback of Blowfish algorithm is, it takes more time to create the S-box entries. To overcome this, we are replacing process of S-box creation in blowfish, by using key dependent S-box creation from AES without affecting the basic operation of blowfish. The method proposed in this paper uses good features of blowfish as well as AES and also this paper demonstrates the performance of blowfish and new algorithm by considering different aspects of security namely Encryption Quality, Key Sensitivity, and Correlation of horizontally adjacent pixels in an encrypted image.

Keywords: AES, blowfish, correlation coefficient, encryption quality, key sensitivity, s-box

Procedia PDF Downloads 217