Search results for: 2d and 3d data conversion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26320

Search results for: 2d and 3d data conversion

25510 Land Transfer for New Township and Its Impact from Dwellers' Point of View: A Case Study of New Town Kolkata

Authors: Subhra Chattopadhyay

Abstract:

New Towns are usually built up at city-periphery with an eye to accommodate overspill population and functions of the city. ‘New towns are self-sufficient planned towns having a full range of urban economic and social activities, so it can provide employments for all of its inhabitants as well as a balanced self-content social community could be maintained’. In 3rd world countries New towns often emerge from scratch i.e on the area having no urban background and therefore, it needs a massive land conversion from rural to urban. This paper aims to study the implication of such land title transfer into rural sustainability with a case study at Jatragachi, New Town Kolkata. Broad objectives of this study are to understand 1. new changes in this area like i)changes in land use, ii) demographic changes, iii) occupational changes of the local people and 2.their view about new town planning. Major observations are stated below. The studied area was completely rural till recent years and is now at the heart of New Town Kolkata. Though this area is now under the jurisdiction of New Town Kolkata Development Authority (NKDA), it is still administrated by rural self-government.It creates administrative confusion and misuse of public capital. It is observed in this study that cultivation was the mainstay of livelihood for the majority of residents till recent past. There was a dramatic rise in irrigated area in the decade of 90’s pointing out agricultural prosperity.The area achieved the highest productivity of rice in the District. Percentage of marginal workers dropped significantly.In addition to it, ascending women’s literacy rate as found in this rural Mouza obviously indicates a constant social progress .Through land conversion, this flourishing agricultural land has been transformed into urban area with highly sophisticated uses. Such development may satisfy educated urban elite but the dwellers of the area suffer a lot. They bear the cost of new town planning through loss of their assured food and income as well as their place identity. The number of marginal workers increases abruptly. The growth of female literacy drops down. The area loses its functional linkages with its surroundings and fails to prove its actual growth potentiality. The physical linkages( like past roads and irrigation infrastructure) which had developed through time to support the economy become defunct. The ecological services which were provided by the agricultural field are denied. The historicity of this original site is demolished. Losses of the inhabitants of the area who have been evicted are also immense and cannot be materially compensated. Therefore, the ethos of such new town planning in stake of rural sustainability is under question. Need for an integrated approach for rural and urban development planning is felt in this study.

Keywords: new town, sustainable development, growth potentiality, land transfer

Procedia PDF Downloads 316
25509 WiFi Data Offloading: Bundling Method in a Canvas Business Model

Authors: Majid Mokhtarnia, Alireza Amini

Abstract:

Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.

Keywords: bundling, canvas business model, telecommunication, WiFi data offloading

Procedia PDF Downloads 203
25508 Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization

Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia

Abstract:

Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm.

Keywords: low-cost adsorbents, fig leaves, full factorial design, phenol, biosorption

Procedia PDF Downloads 101
25507 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 438
25506 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: nanoparticle, nanotube, oximes, precursor, supercritical CO2

Procedia PDF Downloads 360
25505 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 306
25504 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 128
25503 Sunlight-Activated Graphene Heterostructure Transparent Cathodes for High-Performance Graphene/Si Schottky Junction Photovoltaics

Authors: Po-Sun Ho, Chun-Wei Chen

Abstract:

This work demonstrated a “sunlight-activated” graphene-heterostructure transparent electrode in which photogenerated charges from a light-absorbing material are transferred to graphene, resulting in the modulation of electrical properties of the graphene transparent electrode caused by a strong light–matter interaction at graphene-heterostructure interfaces. A photoactive graphene/TiOx-heterostructure transparent cathode was used to fabricate an n-graphene/p-Si Schottky junction solar cell, achieving a record-high power conversion efficiency (>10%). The photoactive graphene-heterostructure transparent electrode, which exhibits excellent tunable electrical properties under sunlight illumination, has great potential for use in the future development of graphene-based photovoltaics and optoelectronics.

Keywords: graphene, transparent electrode, graphene/Si Schottky junction, solar cells

Procedia PDF Downloads 313
25502 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 357
25501 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 74
25500 Influence of MgO Physically Mixed with Tungsten Oxide Supported Silica Catalyst on Coke Formation

Authors: Thidaya Thitiapichart

Abstract:

The effect of additional magnesium oxide (MgO) was investigated by using the tungsten oxide supported on silica catalyst (WOx/SiO2) physically mixed with MgO in a weight ratio 1:1. The both fresh and spent catalysts were characterized by FT-Raman spectrometer, UV-Vis spectrometer, X-Ray diffraction (XRD), and temperature programmed oxidation (TPO). The results indicated that the additional MgO could enhance the conversion of trans-2-butene due to isomerization reaction. However, adding MgO would increase the amount of coke deposit on the WOx/SiO2 catalyst. The TPO profile presents two peaks when the WOx/SiO2 catalyst was physically mixed with MgO. The further peak was suggested to be coming from the coke precursor that could be produced by isomerization reaction of the undesired product. Then, the occurred coke precursor could deposit and form coke on the acid catalyst.

Keywords: coke formation, metathesis, magnesium oxide, physically mix

Procedia PDF Downloads 254
25499 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 531
25498 Design of Jumping Structure of Spherical Robot Based on Archimedes' Helix

Authors: Zhang Zijian

Abstract:

Nowadays, spherical robots have played an important role in many fields, but the insufficient ability of obstacle surmounting limits their wider application fields. To solve this problem, a jumping system of a spherical robot is designed based on Archimedes helix. The jumping system of the robot utilizes the characteristics of Archimedes helix and isovelocity helix to achieve constant speed and stable contraction, which ensures the stability of the system. Also, the jumping action of the robot is realized by instantaneous release of elastic potential energy. In order to verify the effectiveness of the jumping system, we designed a spherical robot and its jumping system. The experimental results show that the jumping system has the advantages of light weight, small size, high energy conversion efficiency, and can realize the spherical jumping function.

Keywords: hopping mechanism, Archimedes' Helix, hopping robot, spherical robot

Procedia PDF Downloads 142
25497 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 563
25496 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 404
25495 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 81
25494 Full Fat Soybean Meal as a Substitute for Soybean Meal in Broiler Rations

Authors: R. M. K. S. Chandana, A. P. D. G. Pathirana, N. Priyankarage, W. A. D. Nayananjalie, S. S. P. Silva

Abstract:

Full fat soybean meal (FFSBM) has been used in many parts of the world together with solvent-extracted soybean meal (SBM) in livestock feeds. Although some local FFSBM is available, their use has not been assessed experimentally. This study was carried out to evaluate the use of local extruded FFSBM in broiler rations. Four treatment diets were formulated by incorporating locally produced FFSBM (0, 10, 20, and 30%) as a replacement for soybean meal (SBM) in a two-phase (starter and finisher) feeding program. Two hundred Hubbard F 15 day old broiler chicks were randomly assigned into four treatments with five replicates per each. Bodyweight gain (BWG), feed intakes (FI), and feed conversion ratio (FCR) were calculated for a period of 42 days. Nutrient utilization in the form of dry matter (DM), energy, nitrogen, and fat retention were estimated by the total collection method in three weeks old broilers. At the end of the experiment, carcass weight was measured, and the dressing percentage was calculated. Data were analyzed using one way analysis of variance (ANOVA) in SAS. There was no significant effect of FFSBM on feed intakes of chicks fed different diets (p > 0.05). Birds fed the control diet, and FF10 (10% FFSBM diet) gained significantly more than that of birds fed FF20 or FF30 diets (p > 0.05). In the finisher period, control birds gained more than all the other treatment birds. FCR was poorer in bird fed higher levels of FFSBM compared to the control or FF10 birds during their early life, but that was not evident in the latter part of the experiment. Treatments did not alter (p > 0.05) the retention of DM and nitrogen, but energy utilization was lowest (p < 0.05) in birds fed with 0% FFSBM, and the highest fat digestibility was observed in birds fed with 30% FFSBM diets. Thus, it can be concluded that FFSBM can be used as a substitute for SBM in broiler rations and could be incorporated up to 10% of the diet safely with no adverse effects on broiler performances.

Keywords: body weight, broiler, digestibility, full fat soybean meal, soybean meal

Procedia PDF Downloads 154
25493 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 97
25492 Effects of Dietary Polyunsaturated Fatty Acids and Beta Glucan on Maturity, Immunity and Fry Quality of Pabdah Catfish, Ompok pabda

Authors: Zakir Hossain, Md. Saddam Hossain

Abstract:

A nutritionally balanced diet and selection of appropriate species are important criteria in aquaculture. The present study was conducted to evaluate the effects of polyunsaturated fatty acids (PUFAs) and beta glucan containing diet on growth performance, feed utilization, maturation, immunity, early embryonic and larval development of endangered Pabdah catfish, Ompok pabda. In this study, squid extracted lipids and mushroom powder were used as the source of PUFAs and beta glucan, respectively, and formulated two isonitrogenous diets such as basal or control (CON) diet and treated (PBG) diet with maintaining 30% protein levels. During the study period, similar physicochemical conditions of water such as temperature, pH, and dissolved oxygen (DO) were 26.5±2 °C, 7.4±0.2, and 6.7±0.5 ppm, respectively in each cistern. The results showed that final mean body weight, final mean length gain, food conversion ratio (FCR), specific growth rate (SGR), food conversion efficiency (%), hepatosomatic index (HSI), kidney index (KI), and viscerosomatic index (VSI) were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The length-weight relationship and relative condition factor (K) of O. pabda were significantly (P<0.05) affected by the PBG diet. The gonadosomatic index (GSI), sperm viability, blood serum calcium ion concentrations (Ca²⁺), and vitellogenin level were significantly (P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet; which was used to the indication of fish maturation. During the spawning season, lipid granules and normal morphological structure were observed in the treated fish liver, whereas fewer lipid granules of liver were observed in the control group. Based on the immunity and stress resistance-related parameters such as hematological indices, antioxidant activity, lysozyme level, respiratory burst activity, blood reactive oxygen species (ROS), complement activity (ACH50 assay), specific IgM, brain AChE, plasma PGOT, and PGPT enzyme activity were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The fecundity, fertilization rate (92.23±2.69%), hatching rate (87.43±2.17 %) and survival (76.62±0.82%) of offspring were significantly higher (P˂0.05) in the PBG diet than in the control. Consequently, early embryonic and larval development was better in PBG treated group than in the control. Therefore, the present study showed that the polyunsaturated fatty acids (PUFAs) and beta glucan enriched experimental diet were more effective and achieved better growth, feed utilization, maturation, immunity, and spawning performances of O. pabda.

Keywords: polyunsaturated fatty acids, beta glucan, maturity, immunity, catfish

Procedia PDF Downloads 19
25491 Improved Photo-Active Layer Properties for Efficient Organic Solar Cells

Authors: Chahrazed Bendenia, Souhila Bendenia, Samia Moulebhar, Hanaa Merad-Dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

In recent years, organic solar cells (OSCs) have become the fundamental concern of researchers thanks to their advantages in terms of flexibility, manufacturing processes and low cost. The performance of these devices is influenced by various factors, such as the layers introduced in the stacking of the solar cell realized. In our work, the modeling of a reverse OSC under AM1.5G illumination will be determined. The photo-active polymer/fullerene layer will be analyzed from the polymer variation of this layer using the SCAPS simulator to extract the J-V characteristics: open circuit voltage (Voc), short circuit current (Jsc), filling factor (FF) and power conversion efficiency (η). The results obtained indicated that the materials used have a significant impact on improving the photovoltaic parameters of the devices studied.

Keywords: solar, polymer, simulator, characteristics

Procedia PDF Downloads 81
25490 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme

Procedia PDF Downloads 383
25489 Protecting Privacy and Data Security in Online Business

Authors: Bilquis Ferdousi

Abstract:

With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.

Keywords: privacy, data security, legislation, online business

Procedia PDF Downloads 110
25488 Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm

Authors: Orhun Vural, Oguz Bayat, Rustu Akay, Osman N. Ucan

Abstract:

This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms.

Keywords: parallel k-means algorithm, parallel clustering, clustering algorithms, clustering on flowing data

Procedia PDF Downloads 227
25487 An Analysis of Privacy and Security for Internet of Things Applications

Authors: Dhananjay Singh, M. Abdullah-Al-Wadud

Abstract:

The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.

Keywords: Internet of Things (IoT), message authentication, privacy, security

Procedia PDF Downloads 387
25486 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 395
25485 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 142
25484 Towards A Framework for Using Open Data for Accountability: A Case Study of A Program to Reduce Corruption

Authors: Darusalam, Jorish Hulstijn, Marijn Janssen

Abstract:

Media has revealed a variety of corruption cases in the regional and local governments all over the world. Many governments pursued many anti-corruption reforms and have created a system of checks and balances. Three types of corruption are faced by citizens; administrative corruption, collusion and extortion. Accountability is one of the benchmarks for building transparent government. The public sector is required to report the results of the programs that have been implemented so that the citizen can judge whether the institution has been working such as economical, efficient and effective. Open Data is offering solutions for the implementation of good governance in organizations who want to be more transparent. In addition, Open Data can create transparency and accountability to the community. The objective of this paper is to build a framework of open data for accountability to combating corruption. This paper will investigate the relationship between open data, and accountability as part of anti-corruption initiatives. This research will investigate the impact of open data implementation on public organization.

Keywords: open data, accountability, anti-corruption, framework

Procedia PDF Downloads 341
25483 Methylation Analysis of PHF20L1 and DACT2 Gene Promoters in Women with Breast Cancer

Authors: Marta E. Hernandez-Caballero, Veronica Borgonio-Cuadra, Antonio Miranda-Duarte, Xochitl Rojas-Toledo, Normand Garcia-Hernandez, Maura Cardenas-Garcia, Teresa Abad-Camacho

Abstract:

Breast cancer (BC) is the most common tumor in women over the world. DNA methylation is an epigenetic modification critical in CpG sites, aberrant methylation of CpG islands in promoters is a hallmark of cancer. So, gene expression can be regulated by alterations in DNA methylation. In cell lines DACT2 gene reduces the growth and migration of tumor cells by its participation in the suppression of TGFb/SMAD2/3. PHF20L1 is involved in histone acetylation therefore, it regulates transcription. Our aim was to analyze the methylation status of the DACT2 and PHF20L1 promoter regions in tumoral and healthy mammary tissue from women with BC in different progression states. The study included 77 patients from Centro Medico Nacional La Raza in Mexico City. After identifying a CpG island in DACT2 and PHF20L1 promoters, DNA methylation status was analyzed through sodium bisulfite with subsequent amplification using methylation-specific PCR. Results revealed no changes in methylation status of PHF20L1 and cancer stages (II y III) or in comparison to healthy tissues, it was demethylated. DACT2 promoter methylation was no significant between tumoral stages (II, P = 0.37; III, P = 0.17) or with healthy tissue. Previous data reported DACT2 methylated in nasopharyngeal carcinoma but in this study promoter methylation was not observed. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains, it has been suggested that can stabilize DNMT1 regulating DNA methylation, therefore, was associated with poor prognostic in BC. We found no evidence of methylation in patients and controls in PHF20L1 promoter, so its association with BC may have no direct relation with promoter methylation. More studies including other methylation sites in these genes in BC are necessary.

Keywords: bisulfite conversion, breast cancer, DACT2, DNA methylation, PHF20L1, tumoral status

Procedia PDF Downloads 305
25482 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip

Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac

Abstract:

Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.

Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating

Procedia PDF Downloads 220
25481 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 121