Search results for: construction cost
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9260

Search results for: construction cost

1100 A Study on the Measurement of Spatial Mismatch and the Influencing Factors of “Job-Housing” in Affordable Housing from the Perspective of Commuting

Authors: Daijun Chen

Abstract:

Affordable housing is subsidized by the government to meet the housing demand of low and middle-income urban residents in the process of urbanization and to alleviate the housing inequality caused by market-based housing reforms. It is a recognized fact that the living conditions of the insured have been improved while constructing the subsidized housing. However, the choice of affordable housing is mostly in the suburbs, where the surrounding urban functions and infrastructure are incomplete, resulting in the spatial mismatch of "jobs-housing" in affordable housing. The main reason for this problem is that the residents of affordable housing are more sensitive to the spatial location of their residence, but their selectivity and controllability to the housing location are relatively weak, which leads to higher commuting costs. Their real cost of living has not been effectively reduced. In this regard, 92 subsidized housing communities in Nanjing, China, are selected as the research sample in this paper. The residents of the affordable housing and their commuting Spatio-temporal behavior characteristics are identified based on the LBS (location-based service) data. Based on the spatial mismatch theory, spatial mismatch indicators such as commuting distance and commuting time are established to measure the spatial mismatch degree of subsidized housing in different districts of Nanjing. Furthermore, the geographically weighted regression model is used to analyze the influencing factors of the spatial mismatch of affordable housing in terms of the provision of employment opportunities, traffic accessibility and supporting service facilities by using spatial, functional and other multi-source Spatio-temporal big data. The results show that the spatial mismatch of affordable housing in Nanjing generally presents a "concentric circle" pattern of decreasing from the central urban area to the periphery. The factors affecting the spatial mismatch of affordable housing in different spatial zones are different. The main reasons are the number of enterprises within 1 km of the affordable housing district and the shortest distance to the subway station. And the low spatial mismatch is due to the diversity of services and facilities. Based on this, a spatial optimization strategy for different levels of spatial mismatch in subsidized housing is proposed. And feasible suggestions for the later site selection of subsidized housing are also provided. It hopes to avoid or mitigate the impact of "spatial mismatch," promote the "spatial adaptation" of "jobs-housing," and truly improve the overall welfare level of affordable housing residents.

Keywords: affordable housing, spatial mismatch, commuting characteristics, spatial adaptation, welfare benefits

Procedia PDF Downloads 104
1099 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)

Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar

Abstract:

Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.

Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus

Procedia PDF Downloads 60
1098 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing

Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou

Abstract:

The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.

Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation

Procedia PDF Downloads 114
1097 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 149
1096 Split Health System for Diabetes Care in Urban Area: Experience from an Action Research Project in an Urban Poor Neighborhood in Bengaluru

Authors: T. S. Beerenahally, S. Amruthavalli, C. M. Munegowda, Leelavathi, Nagarathna

Abstract:

Introduction: In majority of urban India, the health system is split between different authorities being responsible for the health care of urban population. We believe that, apart from poor awareness and financial barriers to care, there are other health system barriers which affect quality and access to care for people with diabetes. In this paper, we attempted to identify health system complexity that determines access to public health system for diabetes care in KG Halli, a poor urban neighborhood in Bengaluru. The KG Halli has been a locus of a health systems research from 2009 to 2015. Methodology: The source of data is from the observational field-notes written by research team as part of urban health action research project (UHARP). Field notes included data from the community and the public primary care center. The data was generated by the community health assistants and the other research team members during regular home visits and interaction with individuals who self-reported to be diabetic over four years as part of UHARP. Results: It emerged during data analysis that the patients were not keen on utilizing primary public health center for many reasons. Patient has felt that the service provided at the center was not integrated. There was lack of availability of medicines, with a regular stock out of medicines in a year and laboratory service for investigation was limited. Many of them said that the time given by the providers was not sufficient and there was also a feeling of providers not listening to them attentively. The power dynamics played a huge role in communication. Only the consultation was available for free of cost at the public primary care center. The patient had to spend for the investigations and the major portion for medicine. Conclusion: Diabetes is a chronic disease that poses an important emerging public health concern. Most of the financial burden is borne by the family as the public facilities have failed to provide free care in India. Our study indicated various factors including individual beliefs, stigma and financial constraints affecting compliance to diabetes care.

Keywords: diabetes care, disintegrated health system, quality of care, urban health

Procedia PDF Downloads 158
1095 A Case Study of Determining the Times of Overhauls and the Number of Spare Parts for Repairable Items in Rolling Stocks with Simulation

Authors: Ji Young Lee, Jong Woon Kim

Abstract:

It is essential to secure high availability of railway vehicles to realize high quality and efficiency of railway service. Once the availability decreased, planned railway service could not be provided or more cars need to be reserved. additional cars need to be purchased or the frequency of railway service could be decreased. Such situation would be a big loss in terms of quality and cost related to railway service. Therefore, we make various efforts to get high availability of railway vehicles. Because it is a big loss to operators, we make various efforts to get high availability of railway vehicles. To secure high availability, the idle time of the vehicle needs to be reduced and the following methods are applied to railway vehicles. First, through modularization design, exchange time for line replaceable units is reduced which makes railway vehicles could be put into the service quickly. Second, to reduce periodic preventive maintenance time, preventive maintenance with short period would be proceeded test oriented to minimize the maintenance time, and reliability is secured through overhauls for each main component. With such design changes for railway vehicles, modularized components are exchanged first at the time of vehicle failure or overhaul so that vehicles could be put into the service quickly and exchanged components are repaired or overhauled. Therefore, spare components are required for any future failures or overhauls. And, as components are modularized and costs for components are high, it is considerably important to get reasonable quantities of spare components. Especially, when a number of railway vehicles were put into the service simultaneously, the time of overhauls come almost at the same time. Thus, for some vehicles, components need to be exchanged and overhauled before appointed overhaul period so that these components could be secured as spare parts for the next vehicle’s component overhaul. For this reason, components overhaul time and spare parts quantities should be decided at the same time. This study deals with the time of overhauls for repairable components of railway vehicles and the calculation of spare parts quantities in consideration of future failure/overhauls. However, as railway vehicles are used according to the service schedule, maintenance work cannot be proceeded after the service was closed thus it is quite difficult to resolve this situation mathematically. In this study, Simulation software system is used in this study for analyzing the time of overhauls for repairable components of railway vehicles and the spare parts for the railway systems.

Keywords: overhaul time, rolling stocks, simulation, spare parts

Procedia PDF Downloads 332
1094 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer

Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz

Abstract:

Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.

Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions

Procedia PDF Downloads 143
1093 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 109
1092 Effect of Different Feed Composition on the Growth Performance in Early Weaned Piglets

Authors: Obuzor Eze Obuzor, Ekpoke Okurube Sliver

Abstract:

The study was carried out at Debee farms at Ahoada West Local Government area, Rivers State, Nigeria. To evaluate the impact of two different cost-effective available feed composition on growth performance of weaned piglets. Thirty weaned uncontrolled cross bred (Large white x pietrain) piglets of average initial weight of 3.04 Kg weaned at 30days were assigned to three dietary treatments, comprising three replicates of 10 weaned piglets each, piglets were kept at 7 °C in different pens with dimensions of 4.50 × 4.50 m. The design of the experiment was completely randomized design, data from the study were subjected to one-way analysis of variance (ANOVA) and significant means were separated using Duncan's Multiple Range Test using Statistical Analysis System (SAS) software for windows (2 0 0 3), statistical significance was assessed at P < 0.05 (95% confidence interval) while survival rate was calculated using simple percentage. A standard diet was prepared to meet the nutrient requirements of weaned piglets at (20.8% crude protein). The three diets were fed to the animals in concrete feeding trough, control diet (C) had soybean meal while first treatment had spent grain (T1) and the second treatment had wheat offal (T2) respectively. The experiment was partitioned into four weeks periods (days 1-7, 8-14, 15-21 and 22-28). Feed and water were given unrestrictedly throughout the period of the experiment. The feed intake and weights of the pigs were recorded on weekly basis. Feed conversion ratio and daily weight gain were calculated and the study lasted for four weeks. There was no significant (P>0.05) effect of diet on survival rate, final body weight, average daily weight gain, daily feed intake and feed conversion ratio. The overall performance showed that treatment one (T1) had survival rate (93%), improved daily weight gain (36.21 g), average daily feed intake (120.14 g) and had the best feed conversion ratio (0.29) similar high mean value with the control while treatment two (T2) had lowest and negative response to all parameters. It could be concluded that feed formulated with spent grain is cheaper than control (soybean meal) and also improved the growth performance of weaned piglets.

Keywords: piglets, weaning, feed conversions ratio, daily weight gain

Procedia PDF Downloads 63
1091 Design of a Plant to Produce 100,000 MTPY of Green Hydrogen from Brine

Authors: Abdulrazak Jinadu Otaru, Ahmed Almulhim, Hassan Alhassan, Mohammed Sabri

Abstract:

Saudi Arabia is host to a state-owned oil and gas corporation, known as Saudi ARAMCO, that is responsible for the highest emissions of carbon dioxide (CO₂) due to the heavy reliance on fossil fuels as an energy source for various sectors such as transportation, aerospace, manufacturing, and residential use. Unfortunately, the detrimental consequences of CO₂ emissions include escalating temperatures in the Middle East region, posing significant obstacles in terms of food security and water scarcity for the Kingdom of Saudi Arabia. As part of the Saudi Vision 2030 initiative, which aims to reduce the country's reliance on fossil fuels by 50 %, this study focuses on designing a plant that will produce approximately 100,000 metric tons per year (MTPY) of green hydrogen (H₂) using brine as the primary feedstock. The proposed facility incorporates a double electrolytic technology that first separates brine or sodium chloride (NaCl) into sodium hydroxide, hydrogen gas, and chlorine gas. The sodium hydroxide is then used as an electrolyte in the splitting of water molecules through the supply of electrical energy in a second-stage electrolyser to produce green hydrogen. The study encompasses a comprehensive analysis of process descriptions and flow diagrams, as well as materials and energy balances. It also includes equipment design and specification, cost analysis, and considerations for safety and environmental impact. The design capitalizes on the abundant brine supply, a byproduct of the world's largest desalination plant located in Al Jubail, Saudi Arabia. Additionally, the design incorporates the use of available renewable energy sources, such as solar and wind power, to power the proposed plant. This approach not only helps reduce carbon emissions but also aligns with Saudi Arabia's energy transition policy. Furthermore, it supports the United Nations Sustainable Development Goals on Sustainable Cities and Communities (Goal 11) and Climate Action (Goal 13), benefiting not only Saudi Arabia but also other countries in the Middle East.

Keywords: plant design, electrolysis, brine, sodium hydroxide, chlorine gas, green hydrogen

Procedia PDF Downloads 45
1090 Social Perspective of Gender Biasness Among Rural Children in Haryna State of India

Authors: Kamaljeet Kaur, Vinod Kumari, Jatesh Kathpalia, Bas Kaur

Abstract:

A gender bias towards girl child is pervasive across the world. It is seen in all the strata of the society and manifests in various forms. However nature and extent of these inequalities are not uniform. Generally these inequalities are more prevalent in patriarchal society. Despite emerging and increasing opportunities for women, there are still inequalities between men and women in each and every sphere like education, health, economy, polity and social sphere. Patriarchal ideology as a cultural norm enforces gender construction which is oriented toward hierarchical relations between the sexes and neglect of women in Indian society. Discrimination to girls may also vary by their age and be restricted to the birth order and sex composition of her elder surviving siblings. The present study was conducted to know the gender discrimination among rural children in India. The respondents were selected from three generations as per AICRP age group viz, 18-30 years (3rd generation), 31-60 years (2nd generation) and above 60 years (1st generation). A total sample size was 600 respondents from different villages of two districts of Haryana state comprising of half males and half females. Data were collected using personal interview schedule and analysed by SPSS software. Among the total births 46.35 per cent were girl child and 53.64 % were male child. Dropout rate was more in female children as compared to male children i.e. near about one third (31.09%) female children dropped school followed by 21.17 % male children. It was quite surprising that near about two-third (61.16%) female children and more than half (59.22%) of the male children dropped school. Cooking was mainly performed by adult female with overall mean scores 2.0 and ranked first which was followed by female child (1.7 mean scores) clearly indicating that cooking was the activity performed mainly by females while activity related to purchase of fruits and vegetable, cereals and pulses was mainly done by adult male. First preference was given to male child for serving of costly and special food. Regarding professional aspiration of children of the respondents’ families, it was observed that 20.10% of the male children wanted to become engineer, whereas only 3.89 % female children wanted to become engineer. Ratio of male children was high in both generations irrespective of the districts. School dropouts were more in case of female in both the 1st and 2 nd generations. The main reasons of school dropout were lack of interest, lack of resources and early marriage in both the generations. Female enrolment was more in faculty of arts, whereas in case of male percentage it was more in faculty of non-medical and medical which showed that female children were getting traditional type of education. It is suggested to provide equal opportunities to girls and boys in home as well as outside the home for smooth functioning of society.

Keywords: gender biasness, male child, female child, education, home

Procedia PDF Downloads 84
1089 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 149
1088 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel

Procedia PDF Downloads 111
1087 Social and Economic Challenges of Adopting Sustainable Urban Development in Developing Economy: A Stakeholder's Perception

Authors: Raed Fawzi Mohammed Ameen, Haider I. Alyasari, Maryam Altaweel

Abstract:

Due to rapid urbanization, developing countries faced significant urban challenges that accompanied the population growth such as the inability to provide adequate housing; sustain human and community's health and wellbeing; ensure the safety in urban areas; the prevalence corruption; lack of jobs; and a shortage of investment. The destruction, degradation, and lack of planning are acute in countries such as Iraq that have suffered for more than four decades because of war and international sanctions, resulting in severe damages to the ecology sector, social utilities, housing, infrastructure, as well as the disruption of the economic sector. Many of significant urban development, housing, and regeneration projects are currently underway in different regions in Iraq, labelled as a means to reform the environmental, social, and economic sectors. However, most often with absence of public participation. Hence, there is an urgent need for understanding public perception, especially of urban socio-economic challenges, which represents a crucial concern for many planners, designers, and policy-makers in order to develop effective policies in addition to increasing their participation. The aim of this study is to investigate stakeholder perceptions of the socio-economic challenges of urban development and their priorities in the all Iraqi provinces. A nationwide questionnaire has been conducted (N = 643) across Iraq, using 19- item structured questionnaire where the stakeholder’s perspectives were collected on a 5-point Likert-type scale. The indicators were identified through deep investigation in previous studies. Principal component analysis (PCA) and statistical tests were utilized to the collected responses in order to investigate the linkage between the perceptions of socio- economic challenges and demographic factors. A high value of internal consistency and reliability of the instrument has been achieved (Cronbach’s alpha= 0.867). Five principal components have been identified, namely: economic, cultural aspects, design context, employment, security and housing demands. The item ‘safety of public places' was ranked as the most important, followed by the items 'minimize unplanned housing', and ‘provision of affordable housing’, respectively. Promote high-rise housing from the housing demands group, was ranked the lowest component between all indicators. 'Using sustainable local materials in construction' item had the second lowest mean score. The results also illustrate a link between deficiencies in the social and economic infrastructure because of the destruction and degradation caused by political instability in Iraq in the last few decades.

Keywords: public participation in development, socio-economic challenges, urban development, urban sustainability

Procedia PDF Downloads 132
1086 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry

Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan

Abstract:

Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.

Keywords: energy, renewable energy, selective surface, solar collector

Procedia PDF Downloads 205
1085 Assessment of Incomplete Childhood Immunization Determinants in Ethiopia: A Nationwide Multilevel Study

Authors: Mastewal Endeshaw Getnet

Abstract:

Imunization is one of the most cost-effective and extensively adopted public health strategies for preventing child disability and mortality. Expanded Program on Immunization (EPI) was launched in 1974 with the goal of providing life-saving vaccines to all children in all and building on the success of the global smallpox eradication program. According to World Health Organization report, by 2020, all countries should have achieved 90% vaccination coverage. Many developing countries still have not achieved the goal. Ethiopia is one of Africa's developing countries. The Ethiopian Ministry of health (MoH) launched the EPI program in 1980, with the goal of achieving 90% coverage among children under the age of 1 year by 1990. Among children aged 12-23 months, complete immunization coverage was 47% based on the Ethiopian Demographic and Health Survey (EDAS) 2019 report. The coverage varies depending on the administrative region, ranging from 21% in Afar region to 89% in Amhara region, Ethiopia. Therefore, identifying risk factors for incomplete immunization among children is a key challenge, particularly in Ethiopia, which has a large geographical diversity and a predicted with 119.96 million projected population size in the year 2022. Despite its critical and challenging issue, this issue is still open and has not yet been fully investigated. Recently, a few previous studies have been conducted on the assessment of incomplete children immunization determinants. However, the majority of the studies were cross-sectional surveys that assessed only EPI coverage. Motivated by the above investigation, this study focuses on investigating determinants associated with incomplete immunization among Ethiopian children to facilitate the rate of full immunization coverage. Moreover, we consider both individual immunization and service performance-related factors to investigate incomplete children's determinants. Consequently, we adopted an ecological model in this study. Individual and environmental factors are combined in the Ecological model, which provides multilevel framework for exploring different determinants related with health behaviors. The Ethiopian Demographic and Health Survey will be used as a source of data from 2021 to achieve the objective of this study. The findings of this study will be useful to the Ethiopian government and other public health institutes to improve the coverage score of childhood immunization based on the identified risk determinants.

Keywords: incomplete immunization, children, ethiopia, ecological model

Procedia PDF Downloads 28
1084 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 430
1083 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 121
1082 Effect of Mindfulness Training on Psychological Well-Being: An Experimental Study Using a Mobile App as Intervention

Authors: Beeto W. C. Leung, Nicole C. Y. Lee

Abstract:

It was well known that college students experienced a high level of stress and anxiety. College athletes, a special group of college students, may even encounter a higher level of pressure and distress due to their dual endeavors in academic and athletic settings. Due to the high demands and costs of mental health services, easily accessible, web-based self-help interventions are getting more popular. The aim of the present experimental study was to examine the potential intervention effect of a mindfulness-based self-help mobile App, called 'Smiling Mind', on mindfulness and psychological well-being. Forty-six college athletes, recruited from athletic teams of two local universities in Hong Kong, were randomly assigned to the Mindfulness App Group (MAG) and the Control Group (CG). All participants were administered the Mindful Attention Awareness Scale, Geriatric Depression Scale, and Perceived Stress Scale-10 before the study (Time 1, T1) and after the 4-week intervention (Time 2, T2). MAG was requested to use the app and follow the instructions every day for at least 5 days per week. Participants were also asked to record their daily app usage time. Results showed that, for MAG, from T1 to T2, mindfulness has been increased from 3.25 to 3.92; depressive symptoms and stress has been significantly decreased from 8.6 to 5.1 and 24.8 to 13.5 respectively while for the CG, mindfulness has been decreased slightly from 3.29 to 3.13; depressive symptoms and stress has been slightly increased from 7.1 to 7.3 and 24.1 to 27.1 respectively. Three mixed-design ANOVAs with time (T1, T2) as the within-subjects factor and intervention group (MAG, CG) as the between-subjects factor revealed a main effect of time on mindfulness, F(1, 41) = 10.28, p < 0.01, depressive symptoms, F(1, 41) = 6.55, p < 0.02 and stress, F(1, 41) = 16.96, p < 0.001 respectively. Both predicted interaction between time and intervention group on mindfulness, F(1, 41) = 26.6, p < 0.001, ηp 2 =0.39, depressive symptoms, F(1, 41) = 8.00, p < 0.01, ηp 2 =0.16 and Stress F(1, 41) = 49.3, p < 0.001, ηp 2 =0.55 were significant meaning that participants using the Mindfulness Mobile App in the intervention did experienced a significant increase in mindfulness and significant decrease in depressive symptoms and perceived level of stress after the 4-week intervention when compared with the control group. The present study provided encouraging empirical support for using Smiling Mind, a self-help mobile app, to promote mindfulness and mental health in a cost-effective way. Further studies should examine the potential use of Smiling Mind in different samples, including children and adolescence, as well as, investigate the lasting effects of using the app on other psychosocial outcomes such as emotional regulations.

Keywords: college athletes, experimental study, mindfulness mobile apps, psychological well-being

Procedia PDF Downloads 116
1081 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins

Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova

Abstract:

Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.

Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins

Procedia PDF Downloads 161
1080 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion

Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett

Abstract:

Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. Today, cochlear implantation technology uses electrode array (EA) implanted manually into the cochlea. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to a severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small-scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit has provided tactile information from the digit-phantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have a potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.

Keywords: cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction

Procedia PDF Downloads 395
1079 Utilizing Literature Review and Shared Decision-Making to Support a Patient Make the Decision: A Case Study of Virtual Reality for Postoperative Pain

Authors: Pei-Ru Yang, Yu-Chen Lin, Jia-Min Wu

Abstract:

Background: A 58-year-old man with a history of osteoporosis and diabetes presented with chronic pain in his left knee due to severe knee joint degeneration. The knee replacement surgery was recommended by the doctor. But the patient suffered from low pain tolerance and wondered if virtual reality could relieve acute postoperative wound pain. Methods: We used the PICO (patient, intervention, comparison, and outcome) approach to generate indexed keywords and searched systematic review articles from 2017 to 2021 on the Cochran Library, PubMed, and Clinical Key databases. Results: The initial literature results included 38 articles, including 12 Cochrane library articles and 26 PubMed articles. One article was selected for further analysis after removing duplicates and off-topic articles. The eight trials included in this article were published between 2013 and 2019 and recruited a total of 723 participants. The studies, conducted in India, Lebanon, Iran, South Korea, Spain, and China, included adults who underwent hemorrhoidectomy, dental surgery, craniotomy or spine surgery, episiotomy repair, and knee surgery, with a mean age (24.1 ± 4.1 to 73.3 ± 6.5). Virtual reality is an emerging non-drug postoperative analgesia method. The findings showed that pain control was reduced by a mean of 1.48 points (95% CI: -2.02 to -0.95, p-value < 0.0001) in minor surgery and 0.32 points in major surgery (95% CI: -0.53 to -0.11, p-value < 0.03), and the overall postoperative satisfaction has improved. Discussion: Postoperative pain is a common clinical problem in surgical patients. Research has confirmed that virtual reality can create an immersive interactive environment, communicate with patients, and effectively relieve postoperative pain. However, virtual reality requires the purchase of hardware and software and other related computer equipment, and its high cost is a disadvantage. We selected the best literature based on clinical questions to answer the patient's question and used share decision making (SDM) to help the patient make decisions based on the clinical situation after knee replacement surgery to improve the quality of patient-centered care.

Keywords: knee replacement surgery, postoperative pain, share decision making, virtual reality

Procedia PDF Downloads 62
1078 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 540
1077 Non-Invasive Assessment of Peripheral Arterial Disease: Automated Ankle Brachial Index Measurement and Pulse Volume Analysis Compared to Ultrasound Duplex Scan

Authors: Jane E. A. Lewis, Paul Williams, Jane H. Davies

Abstract:

Introduction: There is, at present, a clear and recognized need to optimize the diagnosis of peripheral arterial disease (PAD), particularly in non-specialist settings such as primary care, and this arises from several key facts. Firstly, PAD is a highly prevalent condition. In 2010, it was estimated that globally, PAD affected more than 202 million people and furthermore, this prevalence is predicted to further escalate. The disease itself, although frequently asymptomatic, can cause considerable patient suffering with symptoms such as lower limb pain, ulceration, and gangrene which, in worse case scenarios, can necessitate limb amputation. A further and perhaps the most eminent consequence of PAD arises from the fact that it is a manifestation of systemic atherosclerosis and therefore is a powerful predictor of coronary heart disease and cerebrovascular disease. Objective: This cross sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (i) ankle brachial index (ABI) and (ii) pulse volume waveform (PVW) recorded by the same automated device, with the presence or absence of peripheral arterial disease (PAD) being verified by an Ultrasound Duplex Scan (UDS). Methods: Patients (n = 205) referred for lower limb arterial assessment underwent an ABI and PVW measurement using volume plethysmography followed by a UDS. Presence of PAD was recorded for ABI if < 0.9 (noted if > 1.30) if PVW was graded as 2, 3 or 4 or a hemodynamically significant stenosis > 50% with UDS. Outcome measure was agreement between measured ABI and interpretation of the PVW for PAD diagnosis, using UDS as the reference standard. Results: Sensitivity of ABI was 80%, specificity 91%, and overall accuracy 88%. Cohen’s kappa revealed good agreement between ABI and UDS (k = 0.7, p < .001). PVW sensitivity 97%, specificity 81%, overall accuracy 84%, with a good level of agreement between PVW and UDS (k = 0.67, p < .001). The combined sensitivity of ABI and PVW was 100%, specificity 76%, and overall accuracy 85% (k = 0.67, p < .001). Conclusions: Combing these two diagnostic modalities within one device provided a highly accurate method of ruling out PAD. Such a device could be utilized within the primary care environment to reduce the number of unnecessary referrals to secondary care with concomitant cost savings, reduced patient inconvenience, and prioritization of urgent PAD cases.

Keywords: ankle brachial index, peripheral arterial disease, pulse volume waveform, ultrasound duplex scan

Procedia PDF Downloads 162
1076 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units

Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey

Abstract:

This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.

Keywords: stirling engine, solar-thermal, power inverter, alternator

Procedia PDF Downloads 274
1075 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 203
1074 A Village Transformed as Census Town a Case Study of Village Nilpur, Tehsil Rajpura, District Patiala (Punjab, India)

Authors: Preetinder Kaur Randhawa

Abstract:

The rural areas can be differentiated from urban areas in terms of their economic activities as rural areas are primarily involved in agricultural sector and provide natural resources whereas, urban areas are primarily involved in infrastructure sector and provide manufacturing services. Census of India defines a Census Town as an area which satisfies the following three criteria i.e. population exceeds 5000, at least 75 percent of male population engaged in non-agricultural sector and minimum population density of 400 persons per square kilometers. Urban areas can be attributed to the improvement of transport facilities, the massive decline in agricultural, especially male workers and workers shift to non-agricultural activities. This study examines the pattern, process of rural areas transformed into urban areas/ census town. The study has analyzed the various factors which are responsible for land transformation as well as the socio-economic transformation of the village population. Nilpur (CT) which belongs to Rajpura Tehsil in Patiala district, Punjab has been selected for the present study. The methodology adopted includes qualitative and quantitative research design, methods based on secondary data. Secondary data has been collected from unpublished revenue record office of Rajpura Tehsil and Primary Census Abstract of Patiala district, Census of India 2011. The results have showed that rate of transformation of a village to census town in Rajpura Tehsil has been one of highest among other villages. The census town has evolved through the evolutionary process of human settlement which grows in size, population and physical development. There must be a complete economic transformation and attainment of high level of technological development. Urban design and construction of buildings and infrastructure can be carried out better and faster and can be used to aid human habitation with the enhancement of quality of life. The study has concluded that in the selected area i.e Nilpur (CT) literacy rate has increased to 72.1 percent in year 2011 from 67.6 percent in year 2001. Similarly non-agricultural work force has increased to 95.2 percent in year 2011 from 81.1 percent in year 2001. It is very much clear that the increased literacy rate has put a positive impact on the involvement of non-agricultural workers have enhanced. The study has concluded that rural-urban linkages are important tools for understanding complexities of people livelihood and their strategies which involve mobility migration and the diversification of income sources and occupations.

Keywords: Census Town, India, Nilpur, Punjab

Procedia PDF Downloads 248
1073 The Structuring of Economic of Brazilian Innovation and the Institutional Proposal to the Legal Management for Global Conformity to Treat the Technological Risks

Authors: Daniela Pellin, Wilson Engelmann

Abstract:

Brazil has sought to accelerate your development through technology and innovation as a response to the global influences, which has received in internal management practices. For this, it had edited the Brazilian Law of Innovation 13.243/2016. However observing the Law overestimated economic aspects the respective application will not consider the stakeholders and the technological risks because there is no legal treatment. The economic exploitation and the technological risks must be controlled by limits of democratic system to find better social development to contribute with the economics agents for making decision to conform with global directions. The research understands this is a problem to face given the social particularities of the country because there has been the literal import of the North American Triple Helix Theory consolidated in developed countries and the negative consequences when applied in developing countries. Because of this symptomatic scenario, it is necessary to create adjustment to conduct the management of the law besides social democratic interests to increase the country development. For this, therefore, the Government will have to adopt some conducts promoting side by side with universities, civil society and companies, informational transparency, catch of partnerships, create a Confort Letter document for preparation to ensure the operation, joint elaboration of a Manual of Good Practices, make accountability and data dissemination. Also the Universities must promote informational transparency, drawing up partnership contracts and generating revenue, development of information. In addition, the civil society must do data analysis about proposals received for discussing to give opinion related. At the end, companies have to give public and transparent information about investments and economic benefits, risks and innovation manufactured. The research intends as a general objective to demonstrate that the efficiency of the propeller deployment will be possible if the innovative decision-making process goes through the institutional logic. As specific objectives, the American influence must undergo some modifications to better suit the economic-legal incentives to potentiate the development of the social system. The hypothesis points to institutional model for application to the legal system can be elaborated based on emerging characteristics of the country, in such a way that technological risks can be foreseen and there will be global conformity with attention to the full development of society as proposed by the researchers.The method of approach will be the systemic-constructivist with bibliographical review, data collection and analysis with the construction of the institutional and democratic model for the management of the Law.

Keywords: development, governance of law, institutionalization, triple helix

Procedia PDF Downloads 138
1072 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data

Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour

Abstract:

Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.

Keywords: geothermal exploration, image enhancement, minerals, spectral mapping

Procedia PDF Downloads 361
1071 Feasibility and Impact of the Community Based Supportive Housing Intervention for Individuals with Chronic Mental Illness in Bangladesh

Authors: Rubina Jahan, Mohammad Zayeed Bin Alam, Razia Sultana, Md Faroque Miah

Abstract:

Mental health remains a significant global public health challenge, profoundly affecting millions worldwide. In Bangladesh, the situation is dire, with the National Mental Health Survey 2018-19 indicating that 19% of adults suffer from any kind of mental disorders, including severe mental disorder of around 2%. Despite these high prevalence rates, there is a substantial treatment gap in low- and middle-income countries, including Bangladesh, where up to 92% of individuals with mental illnesses do not receive adequate care. This gap is exacerbated by social barriers such as stigma, discrimination, social exclusion, poverty, homelessness, and human rights violations. To address these challenges, the SAJIDA Foundation launched the Proshanti in November 2022. Proshanti is a community based supportive housing intervention designed to provide cost-effective, sustainable, long-term care for individuals with chronic mental illnesses. It aims to rehabilitate participants by improving their mental health, quality of life, and equipping them with skills necessary for independent living and social mobility. Currently, Proshanti operates seven houses in Manikganj and Habiganj districts of Bangladesh, accommodating up to 40 individuals. Over a two-year period, individuals have received personalized support from trained personal assistants and care coordinators, regular health checkups, and opportunities for vocational training and community engagement. In this presentation, we will present the outcome of such intervention on individual’s functionality, quality of life and psychological health generated from 24 months of journey. Additionally, a qualitative approach will be employed to understand the facilitators and barriers of program implementation. The Proshanti program represents a promising model for addressing the significant mental health treatment gap in Bangladesh at the community level. Our findings will provide crucial insights into the program's feasibility, effectiveness, and the factors influencing its implementation, potentially guiding future mental health interventions in similar contexts.

Keywords: mental health, community based supportive housing, treatment gap, bangladesh

Procedia PDF Downloads 44