Search results for: artificial potential function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16794

Search results for: artificial potential function

8634 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning

Procedia PDF Downloads 93
8633 Digital Advance Care Planning and Directives: Early Observations of Adoption Statistics and Responses from an All-Digital Consumer-Driven Approach

Authors: Robert L. Fine, Zhiyong Yang, Christy Spivey, Bonnie Boardman, Maureen Courtney

Abstract:

Importance: Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Reengineering ACP by using a web-based, consumer-driven process has recently been suggested. We report early experience with such a process. Objective: Begin to analyze the potential of the creation and use of ACP/ADs as generated by a consumer-friendly, digital process by 1) assessing the likelihood that consumers would create ACP/ADs without structured intervention by medical or legal professionals, and 2) analyzing the responses to determine if the plans can help doctors better understand a person’s goals, preferences, and priorities for their medical treatments and the naming of healthcare agents. Design: The authors chose 900 users of MyDirectives.com, a digital ACP/AD tool, solely based on their state of residence in order to achieve proportional representation of all 50 states by population size and then reviewed their responses, summarizing these through descriptive statistics including treatment preferences, demographics, and revision of preferences. Setting: General United States population. Participants: The 900 participants had an average age of 50.8 years (SD = 16.6); 84.3% of the men and 91% of the women were in self-reported good health when signing their ADs. Main measures: Preferences regarding the use of life-sustaining treatments, where to spend final days, consulting a supportive and palliative care team, attempted cardiopulmonary resuscitation (CPR), autopsy, and organ and tissue donation. Results: Nearly 85% of respondents prefer cessation of life-sustaining treatments during their final days whenever those may be, 76% prefer to spend their final days at home or in a hospice facility, and 94% wanted their future doctors to consult a supportive and palliative care team. 70% would accept attempted CPR in certain limited circumstances. Most respondents would want an autopsy under certain conditions, and 62% would like to donate their organs. Conclusions and relevance: Analysis of early experience with an all-digital web-based ACP/AD platform demonstrates that individuals from a wide range of ages and conditions can engage in an interrogatory process about values, goals, preferences, and priorities for their medical treatments by developing advance directives and easily make changes to the AD created. Online creation, storage, and retrieval of advance directives has the potential to remove barriers to ACP/AD and, thus, to further improve patient-centered end-of-life care.

Keywords: Advance Care Plan, Advance Decisions, Advance Directives, Consumer; Digital, End of Life Care, Goals, Living Wills, Prefences, Universal Advance Directive, Statements

Procedia PDF Downloads 312
8632 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 109
8631 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 70
8630 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 74
8629 A Systematic Review of Ethical Leadership in Tourism and Hospitality Settings

Authors: Majd Megheirkouni

Abstract:

The aim of this study is to identify empirical studies that explore and investigate ethical leadership in order to assess and synthesize its impacts and outcomes. This study seeks to provide an evidence-informed answer to a set of questions on ethical leadership definition in the field of tourism and hospitality, its investigation, and examination, and its outcome. A systematic literature review, using medical science-based methodology, was conducted to synthesize research by reliable means. Four themes were identified from the analysis. These themes are: Ethical leaders’ characteristics, healthy work environment, ethical leadership effectiveness, and the application of ethical leadership across cultures. This study provides the potential to move hospitality and tourism leadership forward and encourage researchers to investigate new research topics. To the best of the author’s knowledge, this is the first systematic review focusing on ethical leadership in tourism and hospitality settings.

Keywords: ethical leadership, approach, outcome, tourism, hospitality, systematic review

Procedia PDF Downloads 90
8628 Blood Clot Emulsification via Ultrasonic Thrombolysis Device

Authors: Sun Tao, Lou Liang, Tan Xing Haw Marvin, Gu Yuandong Alex

Abstract:

Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment.

Keywords: microfabrication, blood clot, ultrasonic thrombolysis device, ultrasonic device

Procedia PDF Downloads 438
8627 Polymer in Electronic Waste: An Analysis

Authors: Anis A. Ansari, Aftab A. Ansari

Abstract:

Electronic waste is inundating the traditional solid-waste-disposal facilities, which are inadequately designed to handle and manage such type of new wastes. Since electronic waste contains mostly hazardous and even toxic materials, the seriousness of its effects on human health and the environment cannot be ignored in present scenario. Waste from the electronic industry is increasing exponentially day by day. From the last 20 years, we are continuously generating huge quantities of e-waste such as obsolete computers and other discarded electronic components, mainly due to evolution of newer technologies as a result of constant efforts in research and development in this sector. Polymers, one of the major constituents in almost every electronic waste, such as computers, printers, electronic equipment, entertainment devices, mobile phones, television sets etc., are if properly recycled can create a new business opportunity. This would not only create potential market for polymers to improve economy but also the priceless land used as dumping sites of electronic waste, can be utilized for other productive purposes.

Keywords: polymer recycling, electronic waste, hazardous materials, electronic components

Procedia PDF Downloads 458
8626 De-Securitizing Identity: Narrative (In)Consistency in Periods of Transition

Authors: Katerina Antoniou

Abstract:

When examining conflicts around the world, it is evident that the majority of intractable conflicts are steeped in identity. Identity seems to be not only a causal variable for conflict, but also a catalytic parameter for the process of reconciliation that follows ceasefire. This paper focuses on the process of identity securitization that occurs between rival groups of heterogeneous collective identities – ethnic, national or religious – as well as on the relationship between identity securitization and the ability of the groups involved to reconcile. Are securitized identities obstacles to the process of reconciliation, able to hinder any prospects of peace? If the level to which an identity is securitized is catalytic to a conflict’s discourse and settlement, then which factors act as indicators of identity de-securitization? The level of an in-group’s identity securitization can be estimated through a number of indicators, one of which is narrative. The stories, views and stances each in-group adopts in relation to its history of conflict and relation with their rival out-group can clarify whether that specific in-group feels victimized and threatened or safe and ready to reconcile. Accordingly, this study discusses identity securitization through narrative in relation to intractable conflicts. Are there conflicts around the world that, despite having been identified as intractable, stagnated or insoluble, show signs of identity de-securitization through narrative? This inquiry uses the case of the Cyprus conflict and its partitioned societies to present official narratives from the two communities and assess whether these narratives have transformed, indicating a less securitized in-group identity for the Greek and Turkish Cypriots. Specifically, the study compares the official historical overviews presented by each community’s Ministry of Foreign Affairs website and discusses the extent to which the two official narratives present a securitized collective identity. In addition, the study will observe whether official stances by the two communities – as adopted by community leaders – have transformed to depict less securitization over time. Additionally, the leaders’ reflection of popular opinion is evaluated through recent opinion polls from each community. Cyprus is currently experiencing renewed optimism for reunification, with the leaders of its two communities engaging in rigorous negotiations, and with rumors calling for a potential referendum for reunification to be taking place even as early as within 2016. Although leaders’ have shown a shift in their rhetoric and have moved away from narratives of victimization, this is not the case for the official narratives used by their respective ministries of foreign affairs. The study’s findings explore whether this narrative inconsistency proves that Cyprus is transitioning towards reunification, or whether the leaders are risking sending a securitized population to the polls to reject a potential reunification. More broadly, this study suggests that in the event that intractable conflicts might be moving towards viable peace, in-group narratives--official narratives in particular--can act as indicators of the extent to which rival entities have managed to reconcile.

Keywords: conflict, identity, narrative, reconciliation

Procedia PDF Downloads 310
8625 Protective Effect of Hesperidin against Cyclophosphamide Hepatotoxicity in Rats

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The protective effect of hesperidin was investigated in rats exposed to liver injury induced by a single intraperitoneal injection of cyclophosphamide (CYP) at a dose of 150 mg kg-1. Hesperidin treatment (100 mg kg-1/day, orally) was applied for seven days, starting five days before CYP administration. Hesperidin significantly decreased the CYP-induced elevations of serum alanine aminotransferase, and hepatic malondialdehyde and myeloperoxidase activity, significantly prevented the depletion of hepatic glutathione peroxidase activity resulted from CYP administration. Also, hesperidin ameliorated the CYP-induced liver tissue injury observed by histopathological examination. In addition, hesperidin decreased the CYP-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, Fas ligand, and caspase-9 in liver tissue. It was concluded that hesperidin may represent a potential candidate to protect against CYP-induced hepatotoxicity.

Keywords: hesperidin, cyclophosphamide, liver, rats

Procedia PDF Downloads 305
8624 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 268
8623 A Feasibility and Implementation Model of Small-Scale Hydropower Development for Rural Electrification in South Africa: Design Chart Development

Authors: Gideon J. Bonthuys, Marco van Dijk, Jay N. Bhagwan

Abstract:

Small scale hydropower used to play a very important role in the provision of energy to urban and rural areas of South Africa. The national electricity grid, however, expanded and offered cheap, coal generated electricity and a large number of hydropower systems were decommissioned. Unfortunately, large numbers of households and communities will not be connected to the national electricity grid for the foreseeable future due to high cost of transmission and distribution systems to remote communities due to the relatively low electricity demand within rural communities and the allocation of current expenditure on upgrading and constructing of new coal fired power stations. This necessitates the development of feasible alternative power generation technologies. A feasibility and implementation model was developed to assist in designing and financially evaluating small-scale hydropower (SSHP) plants. Several sites were identified using the model. The SSHP plants were designed for the selected sites and the designs for the different selected sites were priced using pricing models (civil, mechanical and electrical aspects). Following feasibility studies done on the designed and priced SSHP plants, a feasibility analysis was done and a design chart developed for future similar potential SSHP plant projects. The methodology followed in conducting the feasibility analysis for other potential sites consisted of developing cost and income/saving formulae, developing net present value (NPV) formulae, Capital Cost Comparison Ratio (CCCR) and levelised cost formulae for SSHP projects for the different types of plant installations. It included setting up a model for the development of a design chart for a SSHP, calculating the NPV, CCCR and levelised cost for the different scenarios within the model by varying different parameters within the developed formulae, setting up the design chart for the different scenarios within the model and analyzing and interpreting results. From the interpretation of the develop design charts for feasible SSHP in can be seen that turbine and distribution line cost are the major influences on the cost and feasibility of SSHP. High head, short transmission line and islanded mini-grid SSHP installations are the most feasible and that the levelised cost of SSHP is high for low power generation sites. The main conclusion from the study is that the levelised cost of SSHP projects indicate that the cost of SSHP for low energy generation is high compared to the levelised cost of grid connected electricity supply; however, the remoteness of SSHP for rural electrification and the cost of infrastructure to connect remote rural communities to the local or national electricity grid provides a low CCCR and renders SSHP for rural electrification feasible on this basis.

Keywords: cost, feasibility, rural electrification, small-scale hydropower

Procedia PDF Downloads 211
8622 Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Authors: Hatice Özbek, Caner Çil, Ahmet Rodoplu

Abstract:

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

Keywords: vehicle architecture, automotive lighting functions, filament lamps, bulb lifetime

Procedia PDF Downloads 142
8621 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: excited state hydrogen transfer, supersonic expansion, gas phase spectroscopy, IR-UV double resonance spectroscopy, laser induced fluorescence, photoionization efficiency spectroscopy

Procedia PDF Downloads 58
8620 A Study on Architectural Characteristics‎ of Traditional Iranian Ordinary Houses in Mashhad, Iran

Authors: Rana Daneshvar Salehi

Abstract:

In many Iranian cities including ‎‎Mashhad‎, the capital of ‎‎‎‎Razavi Khorasan Province‎, ‎ordinary samples of domestic architecture ‎on a ‎small scale is not ‎‎‎considered as ‎heritage. ‎While the ‎principals of house formation are ‎‎respected in all ‎‎traditional Iranian ‎‎‎‎houses‎; ‎from moderate to great ones. During the past decade, Mashhad has lost its identity, and has become a modern city. Identifying it as the capital of the Islamic Culture in 2017 by ISESCO and consequently looking for new developments and transfiguration caused to demolish a large ‎number ‎of ‎traditional modest habitation. ‎For this ‎reason, the present paper aims to introduce ‎the three ‎undiscovered houses with the ‎historical and monumental values located in the ‎oldest ‎neighborhoods of Mashhad which have been neglected in the cultural ‎heritage field. The preliminary phase of this approach will be a measured survey to identify the significant characteristics ‎of ‎selected dwellings and understand the challenges through focusing on building ‎form, orientation, ‎‎room function, space proportion and ornamental elements’ details. A comparison between the ‎‎case studies and the wealthy domestically buildings ‎presents that a house belongs to inhabitants ‎with an average income could introduce the same accurate, regular, harmonic and proportionate ‎design which can be found in the great mansions. It reveals that an ordinary traditional house can ‎be regarded as valuable construction not only for its historical characteristics but also ‎for its ‎aesthetical and architectural features that could avoid further destructions in the future.

Keywords: traditional ordinary house, architectural characteristic, proportion, heritage

Procedia PDF Downloads 133
8619 Anticoccidial Activity of Vitis venifera Extract on Oocysts of Different Eimeria Species of Chicken

Authors: Asghar Abbas, Rao Zahid Abbas, Muhammad Asif Raza, Kashif Hussain

Abstract:

In the current experiment, in vitro anticoccidial potential of Vitis venifera (grape seed) extract was evaluated. For this purpose, an in vitro sporulation inhibition assay was used. Collected oocysts of different Eimeria species of chicken were exposed to six different concentrations (w/v) of Vitis venifera extract (TAE) in 10% dimethylsulphoxide solution (DMSO). Dimethylsulphoxide (DMSO) and potassium dichromate solution (K₂Cr₂O₇) served as control groups. Results of the study revealed that Vitis venifera extract (TAE) showed an inhibitory effect on sporulation (%) and damage (%) of Eimeria oocysts in a dose-dependent manner as compared to both control groups. Vitis venifera extract also damaged the morphology of oocysts in terms of shape, size, and number of sporocysts.

Keywords: Vitis venifera, in vitro, Eimeria, oocysts

Procedia PDF Downloads 190
8618 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 54
8617 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 683
8616 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed

Authors: Marion G. Ben-Jacob, David Wang

Abstract:

There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.

Keywords: emporium model, mathematics, pedagogy, STEM

Procedia PDF Downloads 56
8615 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company

Authors: Farzad Jafarpour Taher, Maghsud Solimanpur

Abstract:

Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.

Keywords: multi-period, multi-product production, multi-stage, production planning

Procedia PDF Downloads 77
8614 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar

Authors: Gary Peach, Furqan Hameed

Abstract:

Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.

Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey

Procedia PDF Downloads 217
8613 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 496
8612 Advancing Circular Economy Principles: Integrating AI Technology in Street Sanitation for Sustainable Urban Development

Authors: Xukai Fu

Abstract:

The concept of circular economy is interdisciplinary, intersecting environmental engineering, information technology, business, and social science domains. Over the course of its 15-year tenure in the sanitation industry, Jinkai has concentrated its efforts in the past five years on integrating artificial intelligence (AI) technology with street sanitation apparatus and systems. This endeavor has led to the development of various innovations, including the Intelligent Identification Sweeper Truck (Intelligent Waste Recognition and Energy-saving Control System), the Intelligent Identification Water Truck (Intelligent Flushing Control System), the intelligent food waste treatment machine, and the Intelligent City Road Sanitation Surveillance Platform. This study will commence with an examination of prevalent global challenges, elucidating how Jinkai effectively addresses each within the framework of circular economy principles. Utilizing a review and analysis of pertinent environmental management data, we will elucidate Jinkai's strategic approach. Following this, we will investigate how Jinkai utilizes the advantages of circular economy principles to guide the design of street sanitation machinery, with a focus on digitalization integration. Moreover, we will scrutinize Jinkai's sustainable practices throughout the invention and operation phases of street sanitation machinery, aligning with the triple bottom line theory. Finally, we will delve into the significance and enduring impact of corporate social responsibility (CSR) and environmental, social, and governance (ESG) initiatives. Special emphasis will be placed on Jinkai's contributions to community stakeholders, with a particular emphasis on human rights. Despite the widespread adoption of circular economy principles across various industries, achieving a harmonious equilibrium between environmental justice and social justice remains a formidable task. Jinkai acknowledges that the mere development of energy-saving technologies is insufficient for authentic circular economy implementation; rather, they serve as instrumental tools. To earnestly promote and embody circular economy principles, companies must consistently prioritize the UN Sustainable Development Goals and adapt their technologies to address the evolving exigencies of our world.

Keywords: circular economy, core principles, benefits, the tripple bottom line, CSR, ESG, social justice, human rights, Jinkai

Procedia PDF Downloads 27
8611 Potential of Safflower (Carthamus tinctorius L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Vanja I. Akova, Stefan V. Krustev, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The concentrations of Pb, Zn and Cd in safflower (roots, stems, leaves and seeds), safflower oil and meal were determined. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn and Cd by the safflower seeds. Safflower is a plant which is tolerant to heavy metals and can be grown on contaminated soils, and which can be referred to the hyperaccumulators of cadmium and the accumulators of lead and zinc, and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation. The possibility of further industrial processing will make safflower economically interesting crops for farmers of phytoremediation technology.

Keywords: heavy metals, phytoremediation, polluted soils, safflower

Procedia PDF Downloads 298
8610 Phytochemical and Antibacterial Activity of Chrysanthellum indicum (Linn) Extracts

Authors: I. L. Ibrahim, A. Mann, B. M. Abdullahi

Abstract:

Infectious diseases are prevalent in developing countries and plant extracts are known to contained bioactive compounds that can be used in the management of these diseases. The entire plant of Chrysanthellum indicum (Linn) was air-dried and pulverized into fine powder and then percolated to give ethanol and aqueous extracts. These extracts were phytochemically screened for metabolites and evaluated antibacterial activity against some pathogenic organisms Klebsilla, pneumonia, Bacillus subtilis, and Pseudomonas aeruginosa using agar dilution method. It was found that crude extracts of C. indicum revealed the presence of saponins, tannins, alkaloids, steroidal nucleus, cardiac glycosides, and coumarin while flavonoids and anthraquinones were absent. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the active extract of C. indicum shows that the extract could be a potential source of antibacterial agents.

Keywords: antibacterial activity, Chrysanthellum indicum, infectious diseases, phytochemical screening

Procedia PDF Downloads 502
8609 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 37
8608 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 82
8607 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 68
8606 Using the Clinical Decision Support Platform, Dem DX, to Assess the ‘Urgent Community Care Team’s Notes Regarding Clinical Assessment, Management, and Healthcare Outcomes

Authors: R. Tariq, R. Lee

Abstract:

Background: Heywood, Middleton & Rochdale Urgent Community Care Team (UCCT)1 is a great example of using a multidisciplinary team to cope with demand. The service reduces unnecessary admissions to hospitals and ensures that patients can leave the hospital quicker by making care more readily available within the community and patient’s homes. The team comprises nurses, community practitioners, and allied health professions, including physiotherapy, occupational therapy, pharmacy, and GPs. The main challenge for a team with a range of experiences and skill sets is to maintain consistency of care, which technology can help address. Allied healthcare professionals (HCPs) are often used in expanded roles with duties mainly involving patient consultations and decision making to ease pressure on doctors. The Clinical Reasoning Platform (CRP) Dem Dx is used to support new as well as experienced professionals in the decision making process. By guiding HCPs through diagnosing patients from an expansive directory of differential diagnoses, patients can receive quality care in the community. Actions on the platform are determined using NICE guidelines along with local guidance influencing the assessment and management of a patient. Objective: To compare the clinical assessment, decisions, and actions taken by the UCCT multidisciplinary team in the community and Dem Dx, using retrospective clinical cases. Methodology: Dem Dx was used to analyse 192 anonymised cases provided by the HMR UCCT. The team’s performance was compared with Dem Dx regarding the quality of the documentation of the clinical assessment and the next steps on the patient’s journey, including the initial management, actions, and any onward referrals made. The cases were audited by two medical doctors. Results: The study found that the actions outlined by the Dem Dx platform were appropriate in almost 87% of cases. When in a direct comparison between DemDX and the actions taken by the clinical team, it was found that the platform was suitable 83% (p<0.001) of the time and could lead to a potential improvement of 66% in the assessment and management of cases. Dem Dx also served to highlight the importance of comprehensive and high quality clinical documentation. The quality of documentation of cases by UCCT can be improved to provide a detailed account of the assessment and management process. By providing step-by-step guidance and documentation at every stage, Dem Dx may ensure that legal accountability has been fulfilled. Conclusion: With the ever expanding workforce in the NHS, technology has become a key component in driving healthcare outcomes. To improve healthcare provision and clinical reasoning, a decision support platform can be integrated into HCPs’ clinical practice. Potential assistance with clinical assessments, the most appropriate next step and actions in a patient’s care, and improvements in the documentation was highlighted by this retrospective study. A further study has been planned to ascertain the effectiveness of improving outcomes using the clinical reasoning platform within the clinical setting by clinicians.

Keywords: allied health professional, assessment, clinical reasoning, clinical records, clinical decision-making, ocumentation

Procedia PDF Downloads 152
8605 On the Determinants of Women’s Intrahousehold Decision-Making Power and the Impact of Diverging from Community Standards: A Generalised Ordered Logit Approach

Authors: Alma Sobrevilla

Abstract:

Using panel data from Mexico, this paper studies the determinants of women’s intrahousehold decision-making power using a generalised ordered logit model. Fixed effects estimations are also carried out to solve potential endogeneity coming from unobservable time-invariant factors. Finally, the paper analyses quadratic and community divergence effects of education on power. Results show heterogeneity in the effect of each of the determinants across different levels of decision-making power and suggest the presence of a significant quadratic effect of education. Having more education than the community average has a negative effect on power, supporting the notion that women tend to compensate their success outside the household with submissive attitudes at home.

Keywords: women, decision-making power, intrahousehold, Mexico

Procedia PDF Downloads 335