Search results for: ageing model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17087

Search results for: ageing model

9017 Assessing Livelihood Vulnerability to Climate Change and Adaptation Strategies in Rajanpur District, Pakistan

Authors: Muhammad Afzal, Shahbaz Mushtaq, Duc-Anh-An-Vo, Kathryn Reardon Smith, Thanh Ma

Abstract:

Climate change has become one of the most challenging environmental issues in the 21st century. Climate change-induced natural disasters, especially floods, are the major factors of livelihood vulnerability, impacting millions of individuals worldwide. Evaluating and mitigating the effects of floods requires an in-depth understanding of the relationship between vulnerability and livelihood capital assets. Using an integrated approach, sustainable livelihood framework, and system thinking approach, the study developed a conceptual model of a generalized livelihood system in District Rajanpur, Pakistan. The model visualizes the livelihood vulnerability system as a whole and identifies the key feedback loops likely to influence the livelihood vulnerability. The study suggests that such conceptual models provide effective communication and understanding tools to stakeholders and decision-makers to anticipate the problem and design appropriate policies. It can also serve as an evaluation technique for rural livelihood policy and identify key systematic interventions. The key finding of the study reveals that household income, health, and education are the major factors behind the livelihood vulnerability of the rural poor of District Rajanpur. The Pakistani government tried to reduce the livelihood vulnerability of the region through different income, health, and education programs, but still, many changes are required to make these programs more effective especially during the flood times. The government provided only cash to vulnerable and marginalized families through income support programs, but this study suggests that along with the cash, the government must provide seed storage facilities and access to crop insurance to the farmers. Similarly, the government should establish basic health units in villages and frequent visits of medical mobile vans should be arranged with advanced medical lab facilities during and after the flood.

Keywords: livelihood vulnerability, rural communities, flood, sustainable livelihood framework, system dynamics, Pakistan

Procedia PDF Downloads 53
9016 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 483
9015 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 75
9014 Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering

Authors: Dong Tang, Yongli Zhao

Abstract:

The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt.

Keywords: asphalt, Beaucage model, microstructure, SAXS

Procedia PDF Downloads 84
9013 Investigating the Impact of Individual Risk-Willingness and Group-Interaction Effects on Business Model Innovation Decisions

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. Individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) Which impact has the individual risk-willingness on BMI decisions? And ii) how do group interaction effects impact BMI decisions? After conducting 26 in-depth interviews with executives from the manufacturing industry, the applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, decision-making, group biases, group decisions, group-interaction effects, risk-willingness

Procedia PDF Downloads 101
9012 Profiling the Food Security Status of Farming Households in Chanchaga Area of Nigeria’s Guinea Savana

Authors: Olorunsanya E. O., Adedeji S. O., Anyanwu A. A.

Abstract:

Food insecurity is a challenge to many nations Nigeria inclusive. It is increasingly becoming a major problem among farm households due to many factors chief of which is low labour productivity. This study therefore profiles the food security status of a representative randomly selected 90 farming households in Chanchaga area of Nigeria’s Guinea Savana using structured interview schedule Descriptive and inferential statistics were used as analytical tools for the study. The results of the descriptive statistics show that majority (35.56%) of the surveyed household heads fall within the age range of 40 – 49 years and (88.89%) are male while (78.89) are married. More than half of the respondents have formal education. About 43.3% of the household heads have farm experience of 11- 20 years and a modal household size class range of 7 – 12. The results further reveal that majority (68.8%) earned more than N12, 500 (22.73 US Dollar) per month. The result of households’ food expenditure pattern reveals that an average household spends about N3, 644.44 (6.63 US Dollar) on food and food items on a weekly basis. The result of the analysis of food diversity intake in the study area shows that 63.33% of the sampled households fell under the low household food diversity intake, while 33 households, representing 36.67% ranks high in term of household food diversity intake. The result for the food security status shows that the sampled population was food secure (58.89%) while 41.11% falls below the recommended threshold. The result for the logistics regression model shows that age, engagement in off farm employment and household size are significant in determining the food security status of farm household in the study area. The three variables were significant at 10%, 5% and 1% respectively. The study therefore recommends among others, that measures be put in place by stakeholders to make agriculture attractive for youth since age is a significant determinant of food security in the study area. Awareness should also be created by stakeholders on the needs for effective family planning methods to be adopted by farm household in the study area.

Keywords: Niger State, Guinea Savana, food diversity, logit regression model and food security

Procedia PDF Downloads 110
9011 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: battery, electric vehicles, ultra-capacitor, model predictive control

Procedia PDF Downloads 263
9010 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes

Authors: Lucas Paganin, Viliam Makis

Abstract:

With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.

Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart

Procedia PDF Downloads 96
9009 Continuous-Time Convertible Lease Pricing and Firm Value

Authors: Ons Triki, Fathi Abid

Abstract:

Along with the increase in the use of leasing contracts in corporate finance, multiple studies aim to model the credit risk of the lease in order to cover the losses of the lessor of the asset if the lessee goes bankrupt. In the current research paper, a convertible lease contract is elaborated in a continuous time stochastic universe aiming to ensure the financial stability of the firm and quickly recover the losses of the counterparties to the lease in case of default. This work examines the term structure of the lease rates taking into account the credit default risk and the capital structure of the firm. The interaction between the lessee's capital structure and the equilibrium lease rate has been assessed by applying the competitive lease market argument developed by Grenadier (1996) and the endogenous structural default model set forward by Leland and Toft (1996). The cumulative probability of default was calculated by referring to Leland and Toft (1996) and Yildirim and Huan (2006). Additionally, the link between lessee credit risk and lease rate was addressed so as to explore the impact of convertible lease financing on the term structure of the lease rate, the optimal leverage ratio, the cumulative default probability, and the optimal firm value by applying an endogenous conversion threshold. The numerical analysis is suggestive that the duration structure of lease rates increases with the increase in the degree of the market price of risk. The maximal value of the firm decreases with the effect of the optimal leverage ratio. The results are indicative that the cumulative probability of default increases with the maturity of the lease contract if the volatility of the asset service flows is significant. Introducing the convertible lease contract will increase the optimal value of the firm as a function of asset volatility for a high initial service flow level and a conversion ratio close to 1.

Keywords: convertible lease contract, lease rate, credit-risk, capital structure, default probability

Procedia PDF Downloads 103
9008 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 402
9007 Exploration of Barriers and Challenges to Innovation Process for SMEs: Possibilities to Promote Cooperation Between Scientific and Business Institutions to Address it

Authors: Indre Brazauskaite, Vilte Auruskeviciene

Abstract:

Significance of the study is outlined through current strategic management challenges faced by SMEs. First, innovation is recognized as competitive advantage in the market, having ever changing market conditions. It is of constant interest from both practitioners and academics to capture and capitalize on business opportunities or mitigate the foreseen risks. Secondly, it is recognized that integrated system is needed for proper implementation of innovation process, especially during the period of business incubation, associated with relatively high risks of new product failure. Finally, ability to successful commercialize innovations leads to tangible business results that allow to grow organizations further. This is particularly relevant to SMEs due to limited structures, resources, or capabilities. Cooperation between scientific and business institutions could be a tool of mutual interest to observe, address, and further develop innovations during the incubation period, which is the most demanding and challenging during the innovation process. Material aims to address the following problematics: i) indicate the major barriers and challenges in innovation process that SMEs are facing, ii) outline the possibilities for these barriers and challenges to be addressed by cooperation between scientific and business institutions. Basis for this research is stage-by-stage integrated innovation management process which presents existing challenges and needed aid in operational decision making. The stage-by-stage innovation management process exploration highlights relevant research opportunities that have high practical relevance in the field. It is expected to reveal the possibility for business incubation programs that could combine interest from both – practices and academia. Methodology. Scientific meta-analysis of to-date scientific literature that explores innovation process. Research model is built on the combination of stage-gate model and lean six sigma approach. It outlines the following steps: i) pre-incubation (discovery and screening), ii) incubation (scoping, planning, development, and testing), and iii) post-incubation (launch and commercialization) periods. Empirical quantitative research is conducted to address barriers and challenges related to innovation process among SMEs that limits innovations from successful launch and commercialization and allows to identify potential areas for cooperation between scientific and business institutions. Research sample, high level decision makers representing trading SMEs, are approached with structured survey based on the research model to investigate the challenges associated with each of the innovation management step. Expected findings. First, the current business challenges in the innovation process are revealed. It will outline strengths and weaknesses of innovation management practices and systems across SMEs. Secondly, it will present material for relevant business case investigation for scholars to serve as future research directions. It will contribute to a better understanding of quality innovation management systems. Third, it will contribute to the understanding the need for business incubation systems for mutual contribution from practices and academia. It can increase relevance and adaptation of business research.

Keywords: cooperation between scientific and business institutions, innovation barriers and challenges, innovation measure, innovation process, SMEs

Procedia PDF Downloads 154
9006 The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model

Authors: Maryam Radan, Fereshteh Nejad Dehbashi, Vahid Bayati, Mahin Dianat, Seyyed Ali Mard, Zahra Mansouri

Abstract:

Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs.

Keywords: mesenchymal stem cell, emphysema, Intratracheal, systemic

Procedia PDF Downloads 216
9005 Study of a Decentralized Electricity Market on Awaji Island

Authors: Arkadiusz P. Wójcik, Tetsuya Sato, Shin-Ichiro Shima, Mateusz Malanowski

Abstract:

Over the last decades, new technologies have significantly changed the way information is transmitted and stored. Renewable energy sources have become prevalent and affordable. Cooperation of the Information and Communication Technology industry and Renewable Energy industry makes it possible to create a next generation, decentralized power grid. In this context, the study seeks to identify the wider benefits to the local Japanese economy as a result of the development of a decentralised electricity market. Our general approach aims to integrate an economic analysis (monetary appraisal of costs and benefits to society) with externalities that are not quantifiable in monetary terms (e.g. social impact, environmental impact). The study also highlights opportunities and sets out recommendations for the citizens of the island and the local government. The simulation is the scientific basis for economic impact analysis. Various types of sources of energy have been taken into account: residential wind farm, residential wind turbine, solar farm, residential solar panels and private solar farms. Analysis of local geographic and economic conditions allowed creating a customized business model. Very often farmers on Awaji Island are using crop cycle. During each cycle, one part of the field is resting and replenishing nutrients. In the next year another part of the field is resting. Portable solar panels could be freely set up in this part of the field. At the end of the crop cycle, portable solar panels would be moved to the next resting part. Because of spacious area, for a single household 500 square meters of portable solar panels has been proposed and simulated. The devised simulation shows that the Rate of Return on Investment for solar panels, which are on the island, could reach up to 37.21%. Supposing that about 20% of households install solar panels they could produce 49.11% of the electric energy consumed by households on the island. The analysis shows that rest of the energy supply can be produced by currently existing one huge solar farm and two wind farms to meet 97.59% of demand on electricity for households on the island. Although there are more than 7,000 agricultural fields on the island, young people tend to avoid agricultural work and prefer to move from the island to big cities, live there in little mansions and work until late night. The business model proposed in this study could increase farmer’s monthly income by ¥200,000 - ¥300,000 (1,600 euro – 2,400 euro). Young people could work less and have a higher standard of living than in a city. Creation of a decentralized electricity market can unlock significant benefits in other industries (e.g. electric vehicles), providing a welcome boost to economic growth, jobs and quality of life.

Keywords: digital twin, Matlab, model-based systems engineering, simulink, smart grid, systems engineering

Procedia PDF Downloads 126
9004 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 209
9003 An Experience Report on Course Teaching in Information Systems

Authors: Carlos Oliveira

Abstract:

This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.

Keywords: educational practices, experience report, IT in education, teaching methods

Procedia PDF Downloads 404
9002 Knowledge Based Software Model for the Management and Treatment of Malaria Patients: A Case of Kalisizo General Hospital

Authors: Mbonigaba Swale

Abstract:

Malaria is an infection or disease caused by parasites (Plasmodium Falciparum — causes severe Malaria, plasmodium Vivax, Plasmodium Ovale, and Plasmodium Malariae), transmitted by bites of infected anopheles (female) mosquitoes to humans. These vectors comprise of two types in Africa, particularly in Uganda, i.e. anopheles fenestus and Anopheles gambaie (‘example Anopheles arabiensis,,); feeds on man inside the house mainly at dusk, mid-night and dawn and rests indoors and makes them effective transmitters (vectors) of the disease. People in both urban and rural areas have consistently become prone to repetitive attacks of malaria, causing a lot of deaths and significantly increasing the poverty levels of the rural poor. Malaria is a national problem; it causes a lot of maternal pre-natal and antenatal disorders, anemia in pregnant mothers, low birth weights for the newly born, convulsions and epilepsy among the infants. Cumulatively, it kills about one million children every year in sub-Saharan Africa. It has been estimated to account for 25-35% of all outpatient visits, 20-45% of acute hospital admissions and 15-35% of hospital deaths. Uganda is the leading victim country, for which Rakai and Masaka districts are the most affected. So, it is not clear whether these abhorrent situations and episodes of recurrences and failure to cure from the disease are a result of poor diagnosis, prescription and dosing, treatment habits and compliance of the patients to the drugs or the ethical domain of the stake holders in relation to the main stream methodology of malaria management. The research is aimed at offering an alternative approach to manage and deal absolutely with problem by using a knowledge based software model of Artificial Intelligence (Al) that is capable of performing common-sense and cognitive reasoning so as to take decisions like the human brain would do to provide instantaneous expert solutions so as to avoid speculative simulation of the problem during differential diagnosis in the most accurate and literal inferential aspect. This system will assist physicians in many kinds of medical diagnosis, prescribing treatments and doses, and in monitoring patient responses, basing on the body weight and age group of the patient, it will be able to provide instantaneous and timely information options, alternative ways and approaches to influence decision making during case analysis. The computerized system approach, a new model in Uganda termed as “Software Aided Treatment” (SAT) will try to change the moral and ethical approach and influence conduct so as to improve the skills, experience and values (social and ethical) in the administration and management of the disease and drugs (combination therapy and generics) by both the patient and the health worker.

Keywords: knowledge based software, management, treatment, diagnosis

Procedia PDF Downloads 62
9001 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 397
9000 Knowledge and Utilization of Mammography among Undergraduate Female Students in a Nigerian University

Authors: Ali Arazeem Abdullahi, Mariam Seedat-Khan, Bamidele S. Akanni

Abstract:

Background: Like the rest of the world, cancer of the breast is a life-threatening disease to Nigerian women. The utilization of mammography is however very poor among the general population. Whereas, there strong indications that women who engage in the regular screening of breast cancer using mammography are more likely to have a lower risk of developing and dying from advanced breast cancer compared to unscreened women. This study examined knowledge of breast cancer and utilization of mammography among undergraduate female students at the University of Ilorin, Nigeria. Health Belief Model (HBM) was deployed to guide the conduct of the study. Method: Self-administered questionnaire was used to collect data from 292 undergraduate female students from the faculties of Social and Management Sciences of the University. A simple random sampling technique was used to select the respondents. Data was analyzed using both descriptive and inferential statistics. Results: The study found that apart from high knowledge of breast cancer and mammography, perceived threat, perceived susceptibility and perceived seriousness of breast cancer were equally high. However, the uptake of mammography was very poor largely due to perceived barriers including being single and young and poor history of breast cancer in families (cues to action). The test of hypotheses showed that there is a weak relationship of about 6.8% between knowledge of breast cancer and utilization of mammography (p-value= 0.244) at 0.05 level of significance. However, 64.4% of the respondents were willing to utilize mammography in the future if the opportunity arises. While the study found a significant statistical relationship between the perceived benefits of mammography and its utilization among the respondents, no significant statistical association was found between the socio-demographic characteristics of the respondents and the uptake of mammography. Recommendations: Findings highlight the need for health education interventions to promote breast cancer screening and the utilization mammography, while addressing barriers to the uptake of mammography among female undergraduate students of the University of Ilorin and Nigeria in general.

Keywords: cancer of the breast, mammography, female undergraduate students, health belief model, University of Ilorin

Procedia PDF Downloads 247
8999 A Theoretical Approach on Electoral Competition, Lobby Formation and Equilibrium Policy Platforms

Authors: Deepti Kohli, Meeta Keswani Mehra

Abstract:

The paper develops a theoretical model of electoral competition with purely opportunistic candidates and a uni-dimensional policy using the probability voting approach while focusing on the aspect of lobby formation to analyze the inherent complex interactions between centripetal and centrifugal forces and their effects on equilibrium policy platforms. There exist three types of agents, namely, Left-wing, Moderate and Right-wing who comprise of the total voting population. Also, it is assumed that the Left and Right agents are free to initiate a lobby of their choice. If initiated, these lobbies generate donations which in turn can be contributed to one (or both) electoral candidates in order to influence them to implement the lobby’s preferred policy. Four different lobby formation scenarios have been considered: no lobby formation, only Left, only Right and both Left and Right. The equilibrium policy platforms, amount of individual donations by agents to their respective lobbies and the contributions offered to the electoral candidates have been solved for under each of the above four cases. Since it is assumed that the agents cannot coordinate each other’s actions during the lobby formation stage, there exists a probability with which a lobby would be formed, which is also solved for in the model. The results indicate that the policy platforms of the two electoral candidates converge completely under the cases of no lobby and both (extreme) formations but diverge under the cases of only one (Left or Right) lobby formation. This is because in the case of no lobby being formed, only the centripetal forces (emerging from the election-winning aspect) are present while in the case of both extreme (Left-wing and Right-wing) lobbies being formed, centrifugal forces (emerging from the lobby formation aspect) also arise but cancel each other out, again resulting in a pure policy convergence phenomenon. In contrast, in case of only one lobby being formed, both centripetal and centrifugal forces interact strategically, leading the two electoral candidates to choose completely different policy platforms in equilibrium. Additionally, it is found that in equilibrium, while the donation by a specific agent type increases with the formation of both lobbies in comparison to when only one lobby is formed, the probability of implementation of the policy being advocated by that lobby group falls.

Keywords: electoral competition, equilibrium policy platforms, lobby formation, opportunistic candidates

Procedia PDF Downloads 337
8998 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 160
8997 Hand in Hand with Indigenous People Worldwide through the Discovery of Indigenous Entrepreneurial Models: A Systematic Literature Review of International Indigenous Entrepreneurship

Authors: Francesca Croce

Abstract:

Governmental development strategies aimed at entrepreneurship as a major resource for economic development and poverty reduction of indigenous people. As initiatives and programs are local based, there is a need to better understand the contextual factors of indigenous entrepreneurial models. The purpose of this paper is, therefore, to analyze and integrated the indigenous entrepreneurship literature in order to identify the main models of indigenous entrepreneurship. To answer this need, a systematic literature review was conducted. Relevant articles were identified in selected electronic databases (ABI/Inform Global, Business Source Premier, Web of Science; International Bibliography of the Social Sciences, Academic Search, Sociological Abstract, Entrepreneurial Studies Sources and Bibliography of Native North America) and in selected electronic review. Beginning to 1st January 1995 (first International Day of the World’s Indigenous People), 59 academic articles were selected from 1411. Through systematic analysis of the cultural, social and organizational variables, the paper highlights that a typology of indigenous entrepreneurial models is possible thought the concept of entrepreneurial ecosystem, which includes the geographical position and the environment of the indigenous communities. The results show three models of indigenous entrepreneurship: the urban indigenous entrepreneurship, the semi-urban indigenous entrepreneurship, and rural indigenous entrepreneurship. After the introduction, the paper is organized as follows. In the first part theoretical and practical needs of a systematic literature review on indigenous entrepreneurship are provided. In the second part, the methodology, the selection process and evaluation of the articles are explained. In the third part, findings are presented and each indigenous entrepreneurial model characteristics are discussed. The results of this study bring a new theorization about indigenous entrepreneurship and may be useful for scientists in the field in search of overcoming the cognitive border of Indigenous business models still too little known. Also, the study is addressed to policy makers in charge of indigenous entrepreneurial development strategies more focused on contextual factors studies.

Keywords: community development, entrepreneurial ecosystem, indigenous entrepreneurship model, indigenous people, systematic literature review

Procedia PDF Downloads 285
8996 Development of Standard Evaluation Technique for Car Carpet Floor

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Statistical Energy Analysis is to be the most effective CAE Method for air-born noise analysis in the Automotive area. This study deals with a method to predict the noise level inside of the car under the steady-state condition using the SEA model of car for air-born noise analysis. We can identify weakened part due to the acoustic material properties using it. Therefore, it is useful for the material structural design.

Keywords: air-born noise, material structural design, acoustic material properties, absorbing

Procedia PDF Downloads 427
8995 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 152
8994 Transmission Dynamics of Lumpy Skin Disease in Ethiopia

Authors: Wassie Molla, Klaas Frankena, Mart De Jong

Abstract:

Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.

Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission

Procedia PDF Downloads 302
8993 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 313
8992 Cultivating Students’ Competences through Social Innovation Education

Authors: Ioanna Garefi, Irene Kalemaki

Abstract:

Education is not solely about preparing young people for the world of work but also about equipping them with competences that will enable them to become socially proactive, empowered, responsible, and engaged citizens who will collectively contribute to and benefit from an inclusive and sustainable future. Hence, progress assessment towards competence development is an ongoing process where continuous efforts are needed. This paper abstract presents the work of the H2020 NEMESIS project that aims to investigate, experiment and co-create together with schools a model for introducing and embedding social innovation education (SIE henceforth) in European primary and secondary schools. All in all, during the 2018-2019 academic year, 8 schools from 5 European countries involving 56 teachers, 1030 students, and 80 external stakeholders, experimented with different methodologies for embedding SIE in their contexts. This paper captures briefly the impact of these efforts towards the cultivation and progression of students’ social innovation (SI henceforth) competences. As part of the model, 14 SI competences, whose progress was evaluated, have been introduced falling under 3 interrelated categories: competences for identifying opportunities for social and collective value creation, competences for developing collaborations and building meaningful relations and competences for taking action both on an individual and collective level. Methodologically wise, the evaluation strategy employed was informed by a realist approach, enabling the researchers to go beyond synthesizing 'what happened' and towards understanding 'why it happened', delving into ‘what works, for whom and in what circumstances’. The reason for choosing such an approach was because it goes beyond attempting to answer the basic yes or no question of evaluation and focus on an ‘explanatory quest’ tracing the limits of when and where intervention is effective. A rich mix of sources of evidence have been employed, from focus groups with 80 people from the 5 EU countries to an online survey to 206 students, classroom observations, students’ narratives granting them with the opportunity to freely express their opinions, short stories letting students express their feelings through their imagination and also, drawings so that younger children can express their perception of reality. All these evidences offered insights on the impact of SIE on the development of students’ competences. Research findings showed that students progressed in all 14 SI competences through their involvement in the different activities. This positive progression is attributed to the model’s three core principles: 1) the student-centered approach, rendering students active and self-determined producers of their own learning, 2) the co-creation process fostering intergenerational interactions, empowering thus students by making their voices heard and valued and also, 3) the transformative social action whereby through their projects, students are able to witness the impact they are bringing about with their actions. Concluding, these initial findings, together with the forthcoming evaluation research to a pool of 30 schools around Europe, have the potential to raise the dynamics of the under-investigated field of SIE and encourage its embeddedness in more schools around Europe.

Keywords: competence development, education, social innovation, students

Procedia PDF Downloads 107
8991 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 172
8990 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action

Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere

Abstract:

Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.

Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results

Procedia PDF Downloads 140
8989 The Relationship between Working Models and Psychological Safety

Authors: Rosyellen Rabelo Szvarça, Pedro Fialho, Auristela Duarte de Lima Moser

Abstract:

Background: New ways of working, such as teleworking or hybrid working, have changed and have impacted both employees and organizations. To understand the individuals' perceptions among different working models, this study aimed to investigate levels of psychological safety among employees working in person, hybrid, and remote environments and the correlation of demographic or professional characteristics. Methods: A cross-sectional survey was distributed electronically. A self-administered questionnaire was composed of sociodemographic data, academic status, professional contexts, working models, and the seven-item instrument of psychological safety. The psychological safety instrument was computed to determine its reliability, showing a Cronbach’s 0.75, considering a good scale when compared to the original, analyzed with 51 teams from a North American company, with a Cronbach's alpha coefficient of 0.82. Results: The survey was completed by 328 individuals, 60% of whom were in-person, 29.3% hybrid, and 10.7% remote. The Chi-Square test with the Bonferroni post-test for qualitative variables associated with the working models indicates a significant association (p 0.001) for academic qualifications. In-person models present 29.4% of individuals with secondary education and 38.1% undergraduate; hybrid present 51% postgraduate and 35.4% undergraduate. This was similar to remote workers, with 48.6% postgraduate and 34.3% undergraduate. There were no significant differences in gender composition between work models (p = 0.738), with most respondents being female in all three work groups. Remote workers predominated in areas such as commerce, marketing, and services; education and the public sector were common in the in-person group, while technology and the financial sector were predominant among hybrid workers (p < 0.001). As for leadership roles, there was no significant association with working models (p = 0.126). The decision on the working model was predominantly made by the organization for in-person and hybrid workers (p < 0.001). Preference for the working model was in line with the workers' scenario at that time (p < 0.001). Kruskal-Wallis test with Bonferroni's post hoc test compared the psychological safety scores between working groups, reveling statistically higher scores in hybrid group x̃ = 5.64 compared to in-person group x̃ = 5, with remote workers showing scores similar to other groups x̃ = 5.43 (p = 0.004). Age demonstrated no significant difference between the working groups (p = 0.052). On the other hand, organization tenure and job tenure were higher in in-person groups compared to the hybrid and remote groups (p < 0.001). The hybrid model illustrates a balance between in-person and remote models. The results highlight that higher levels of psychological safety can be correlated with the flexibility of hybrid work, as well as physical interaction, spontaneity, and informal relationships, which are considered determinants of high levels of psychological safety. Conclusions: Psychological safety at the group level using the seven-item scale is widely employed in comparison to other commonly employed measures. Despite psychological safety having been around for decades, primarily studied in in-person work contexts, the current findings contribute to expanding research with hybrid or remote settings. Ultimately, this investigation has demonstrated the significance of work models in assessing psychological safety levels.

Keywords: hybrid work, new ways of working, psychological safety, workplace, working models

Procedia PDF Downloads 16
8988 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 304