Search results for: vector optimization
3499 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter
Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn
Abstract:
The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.Keywords: fuzzy logic system, optimization, membership function, extended FIR filter
Procedia PDF Downloads 7233498 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives
Authors: Chen Guo, Heng Tang, Ben Niu
Abstract:
Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives
Procedia PDF Downloads 1393497 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1113496 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 1453495 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 2523494 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4453493 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain
Procedia PDF Downloads 2913492 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle
Authors: Fares Senouci, Bachir Imine
Abstract:
This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.Keywords: aerodynamics, drag, lift, turbulence model, wind tunnel
Procedia PDF Downloads 2523491 Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing
Authors: Hadjadj Naima, K. Mahdi, D. Belhachat, F. S. Ait Chaouche, A. Ferradji
Abstract:
The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars.Keywords: oil, Nigella sativa, extraction, optimization, temperature, pressure
Procedia PDF Downloads 4803490 Development and Optimization of German Diagnostical Tests in Mathematics for Vocational Training
Authors: J. Thiele
Abstract:
Teachers working at vocational Colleges are often confronted with the problem, that many students graduated from different schools and therefore each had a different education. Especially in mathematics many students lack fundamentals or had different priorities at their previous schools. Furthermore, these vocational Colleges have to provide Graduations for many different working-fields, with different core themes. The Colleges are interested in measuring the different Education levels of their students and providing assistance for those who need to catch up. The Project mathe-meistern was initiated to remedy this problem at vocational Colleges. For this purpose, online-tests were developed. The aim of these tests is to evaluate basic mathematical abilities of the students. The tests are online Multiple-Choice-Tests with a total of 65 Items. They are accessed online with a unique Transaction-Number (TAN) for each participant. The content is divided in several Categories (Arithmetic, Algebra, Fractions, Geometry, etc.). After each test, the student gets a personalized summary depicting their strengths and weaknesses in mathematical Basics. Teachers can visit a special website to examine the results of their classes or single students. In total 5830 students did participate so far. For standardization and optimization purposes the tests are being evaluated, using the classic and probabilistic Test-Theory regarding Objectivity, Reliability and Validity, annually since 2015. This Paper is about the Optimization process considering the Rasch-scaling and Standardization of the tests. Additionally, current results using standardized tests will be discussed. To achieve this Competence levels and Types of errors of students attending vocational Colleges in Nordrheinwestfalen, Germany, were determined, using descriptive Data and Distractorevaluations.Keywords: diagnostical tests in mathematics, distractor devaluation, test-optimization, test-theory
Procedia PDF Downloads 1263489 A Review on Artificial Neural Networks in Image Processing
Authors: B. Afsharipoor, E. Nazemi
Abstract:
Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN
Procedia PDF Downloads 4063488 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method
Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola
Abstract:
In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.Keywords: constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity
Procedia PDF Downloads 3113487 Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)
Authors: Robert Jacobsen
Abstract:
Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated.Keywords: hydrology, mapping, high-definition, inundation
Procedia PDF Downloads 773486 Simulation-Based Investigation of Ferroresonance in Different Transformer Configurations
Authors: George Eduful, Yuanyuan Fan, Ahmed Abu-Siada
Abstract:
Ferroresonance poses a substantial threat to the quality and reliability of power distribution systems due to its inherent characteristics of sustained overvoltages and currents. This paper aims to enhance the understanding and reduce the ferroresonance threat by investigating the susceptibility of different transformer configurations using MATLAB/Simulink simulations. To achieve this, four 200 kVA transformers with different vector groups (D-Yn, Yg-Yg, Yn-Yn, and Y-D11) and core types (3-limb, 5-limb, single-phase) were systematically exposed to controlled ferroresonance conditions. The impact of varying the length of the 11 kV cable connected to the transformers was also examined. Through comprehensive voltage, current, and total harmonic distortion analyses, the performance of each configuration was evaluated and compared. The results of the study indicate that transformers with Y-D11 and Yg-Yg configurations exhibited lower susceptibility to ferroresonance, in comparison to those with D-Y11 and Yg-Yg configurations. This implies that the Y-D11 and Yg-Yg transformers are better suited for applications with high risks of ferroresonance. The insights provided by this study are of significant value for the strategic selection and deployment of transformers in power systems, particularly in settings prone to ferroresonance. By identifying and recommending transformer configurations that demonstrate better resilience, this paper contributes to enhancing the overall robustness and reliability of power grid infrastructure.Keywords: about cable-connected, core type, ferroresonance, over voltages, power transformer, vector group
Procedia PDF Downloads 403485 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 1433484 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 1323483 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization
Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen
Abstract:
This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization
Procedia PDF Downloads 2483482 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3583481 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 1553480 An Optimization Modelling to Evaluate Flights Scheduling at Tourist Airports
Authors: Dimitrios J. Dimitriou
Abstract:
Airport’s serving a tourist destination are an essential counterpart of the tourist demand supply chain, and their productivity is related to the region’s attractiveness and is enhanced by the air transport business. In this paper, the evaluation framework of the scheduled flights between two tourist airports is taken into consideration. By adopting a systemic approach, the arrivals from an airport that its connectivity heavily depended on the departures of another major airport are reviewed. The methodology framework, based on inventory control theory and the numerical example, promotes the use of the modelling formulation. The results would be essential for comparison and exercising to other similar cases.Keywords: airport connectivity, inventory control, optimization, optimum allocation
Procedia PDF Downloads 3343479 Process Optimization and Automation of Information Technology Services in a Heterogenic Digital Environment
Authors: Tasneem Halawani, Yamen Khateeb
Abstract:
With customers’ ever-increasing expectations for fast services provisioning for all their business needs, information technology (IT) organizations, as business partners, have to cope with this demanding environment and deliver their services in the most effective and efficient way. The purpose of this paper is to identify optimization and automation opportunities for the top requested IT services in a heterogenic digital environment and widely spread customer base. In collaboration with systems, processes, and subject matter experts (SMEs), the processes in scope were approached by analyzing four-year related historical data, identifying and surveying stakeholders, modeling the as-is processes, and studying systems integration/automation capabilities. This effort resulted in identifying several pain areas, including standardization, unnecessary customer and IT involvement, manual steps, systems integration, and performance measurement. These pain areas were addressed by standardizing the top five requested IT services, eliminating/automating 43 steps, and utilizing a single platform for end-to-end process execution. In conclusion, the optimization of IT service request processes in a heterogenic digital environment and widely spread customer base is challenging, yet achievable without compromising the service quality and customers’ added value. Further studies can focus on measuring the value of the eliminated/automated process steps to quantify the enhancement impact. Moreover, a similar approach can be utilized to optimize other IT service requests, with a focus on business criticality.Keywords: automation, customer value, heterogenic, integration, IT services, optimization, processes
Procedia PDF Downloads 1073478 Optimization Parameters Using Response Surface Method on Biomechanical Analysis for Malaysian Soccer Players
Authors: M. F. M. Ali, A. R. Ismail, B. M. Deros
Abstract:
Soccer is very popular and ranked as the top sports in the world as well as in Malaysia. Although soccer sport in Malaysia is currently professionalized, but it’s plunging achievements within recent years continue and are not to be proud of. After review, the Malaysian soccer players are still weak in terms of kicking techniques. The instep kick is a technique, which is often used in soccer for the purpose of short passes and making a scoring. This study presents the 3D biomechanics analysis on a soccer player during performing instep kick. This study was conducted to determine the optimization value for approach angle, distance of supporting leg from the ball and ball internal pressure respect to the knee angular velocity of the ball on the kicking leg. Six subjects from different categories using dominant right leg and free from any injury were selected to take part in this study. Subjects were asked to perform one step instep kick according to the setting for the variables with different parameter. Data analysis was performed using 3 Dimensional “Qualisys Track Manager” system and will focused on the bottom of the body from the waist to the ankle. For this purpose, the marker will be attached to the bottom of the body before the kicking is perform by the subjects. Statistical analysis was conducted by using Minitab software using Response Surface Method through Box-Behnken design. The results of this study found the optimization values for all three parameters, namely the approach angle, 53.6º, distance of supporting leg from the ball, 8.84sm and ball internal pressure, 0.9bar with knee angular velocity, 779.27 degrees/sec have been produced.Keywords: biomechanics, instep kick, soccer, optimization
Procedia PDF Downloads 2303477 Ant Colony Optimization Control for Multilevel STATCOM
Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa
Abstract:
Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)
Procedia PDF Downloads 5563476 Optimization of Titanium Leaching Process Using Experimental Design
Authors: Arash Rafiei, Carroll Moore
Abstract:
Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.Keywords: titanium leaching, optimization, experimental design, performance analysis
Procedia PDF Downloads 3723475 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4203474 Development of Methods for Plastic Injection Mold Weight Reduction
Authors: Bita Mohajernia, R. J. Urbanic
Abstract:
Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction
Procedia PDF Downloads 2903473 Solving the Economic Load Dispatch Problem Using Differential Evolution
Authors: Alaa Sheta
Abstract:
Economic Load Dispatch (ELD) is one of the vital optimization problems in power system planning. Solving the ELD problems mean finding the best mixture of power unit outputs of all members of the power system network such that the total fuel cost is minimized while sustaining operation requirements limits satisfied across the entire dispatch phases. Many optimization techniques were proposed to solve this problem. A famous one is the Quadratic Programming (QP). QP is a very simple and fast method but it still suffer many problem as gradient methods that might trapped at local minimum solutions and cannot handle complex nonlinear functions. Numbers of metaheuristic algorithms were used to solve this problem such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). In this paper, another meta-heuristic search algorithm named Differential Evolution (DE) is used to solve the ELD problem in power systems planning. The practicality of the proposed DE based algorithm is verified for three and six power generator system test cases. The gained results are compared to existing results based on QP, GAs and PSO. The developed results show that differential evolution is superior in obtaining a combination of power loads that fulfill the problem constraints and minimize the total fuel cost. DE found to be fast in converging to the optimal power generation loads and capable of handling the non-linearity of ELD problem. The proposed DE solution is able to minimize the cost of generated power, minimize the total power loss in the transmission and maximize the reliability of the power provided to the customers.Keywords: economic load dispatch, power systems, optimization, differential evolution
Procedia PDF Downloads 2823472 Pharmaceutical Applications of Newton's Second Law and Disc Inertia
Authors: Nicholas Jensen
Abstract:
As the effort to create new drugs to treat rare conditions cost-effectively intensifies, there is a need to ensure maximum efficiency in the manufacturing process. This includes the creation of ultracompact treatment forms, which can best be achieved via applications of fundamental laws of physics. This paper reports an experiment exploring the relationship between the forms of Newton's 2ⁿᵈ Law appropriate to linear motion and to transversal architraves. The moment of inertia of three discs was determined by experiments and compared with previous data derived from a theoretical relationship. The method used was to attach the discs to a moment arm. Comparing the results with those obtained from previous experiments, it is found to be consistent with the first law of thermodynamics. It was further found that Newton's 2ⁿᵈ law violates the second law of thermodynamics. The purpose of this experiment was to explore the relationship between the forms of Newton's 2nd Law appropriate to linear motion and to apply torque to a twisting force, which is determined by position vector r and force vector F. Substituting equation alpha in place of beta; angular acceleration is a linear acceleration divided by radius r of the moment arm. The nevrological analogy of Newton's 2nd Law states that these findings can contribute to a fuller understanding of thermodynamics in relation to viscosity. Implications for the pharmaceutical industry will be seen to be fruitful from these findings.Keywords: Newtonian physics, inertia, viscosity, pharmaceutical applications
Procedia PDF Downloads 1173471 Illuminating Human Identity in Theology and Islamic Philosophy
Authors: Khan Shahid, Shahid Zakia
Abstract:
The article demonstrates how Theology and Islamic Philosophy can be illuminated and enhanced through the application of the SOUL framework (Sincere act, Optimization effort, Ultimate goal, Law compliance). The study explores historical development using a phenomenological approach and integrates the SOUL framework to enrich Theology and Islamic Philosophy. The proposed framework highlights the significance of these elements, ultimately leading to a deeper understanding of Theology and Islamic Philosophy.Keywords: SOUL framework, illuminating human identity, theology, Islamic Philosophy, sincerity act, optimization effort, ultimate goals, law compliance
Procedia PDF Downloads 903470 Dengue Virus Infection Rate in Mosquitoes Collected in Thailand Related to Environmental Factors
Authors: Chanya Jetsukontorn
Abstract:
Dengue hemorrhagic fever is the most important Mosquito-borne disease and the major public health problem in Thailand. The most important vector is Aedes aegypti. Environmental factors such as temperature, relative humidity, and biting rate affect dengue virus infection. The most effective measure for prevention is controlling of vector mosquitoes. In addition, surveillance of field-caught mosquitoes is imperative for determining the natural vector and can provide an early warning sign at risk of transmission in an area. In this study, Aedes aegypti mosquitoes were collected in Amphur Muang, Phetchabun Province, Thailand. The mosquitoes were collected in the rainy season and the dry season both indoor and outdoor. During mosquito’s collection, the data of environmental factors such as temperature, humidity and breeding sites were observed and recorded. After identified to species, mosquitoes were pooled according to genus/species, and sampling location. Pools consisted of a maximum of 10 Aedes mosquitoes. 70 pools of 675 Aedes aegypti were screened with RT-PCR for flaviviruses. To confirm individual infection for determining True infection rate, individual mosquitoes which gave positive results of flavivirus detection were tested for dengue virus by RT-PCR. The infection rate was 5.93% (4 positive individuals from 675 mosquitoes). The probability to detect dengue virus in mosquitoes at the neighbour’s houses was 1.25 times, especially where distances between neighboring houses and patient’s houses were less than 50 meters. The relative humidity in dengue-infected villages with dengue-infected mosquitoes was significantly higher than villages that free from dengue-infected mosquitoes. Indoor biting rate of Aedes aegypti was 14.87 times higher than outdoor, and biting times of 09.00-10.00, 10.00-11.00, 11.00-12.00 yielded 1.77, 1.46, 0.68mosquitoes/man-hour, respectively. These findings confirm environmental factors were related to Dengue infection in Thailand. Data obtained from this study will be useful for the prevention and control of the diseases.Keywords: Aedes aegypti, Dengue virus, environmental factors, one health, PCR
Procedia PDF Downloads 145