Search results for: trinomial equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1984

Search results for: trinomial equation

1204 An Application of the Single Equation Regression Model

Authors: S. K. Ashiquer Rahman

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: price, domestic output, GNP, trend variable, wildcat activity

Procedia PDF Downloads 62
1203 Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

Authors: Theodore Halnon, Martin Bojowald

Abstract:

In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply.

Keywords: cosmology, deparameterization, general relativity, quantum mechanics

Procedia PDF Downloads 308
1202 Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light

Authors: Mohamed Gar Alalm, Shinichi Ookawara, Ahmed Tawfik

Abstract:

In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model.

Keywords: phenol, photocatalytic, solar, titanium dioxide

Procedia PDF Downloads 404
1201 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 131
1200 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device

Authors: Tomotaka Aoki, Isao Tomita

Abstract:

We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.

Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio

Procedia PDF Downloads 121
1199 Eco-Tourism: A Need for Sustainable Development

Authors: Chandni Laddha

Abstract:

Tourism was earlier considered as an activity performed by people only for the purpose of entertainment. However, the present era demand for adding something more to the concept of tourism. Nowadays, people are more protected towards environment, so this paper focuses on the significance of ecotourism for the attainment of sustainable development. Ecotourism is a way of sustainable growth of tourist spots maintaining their natural and actual status quo. The ecotourism in India becomes all the more important because India is famous on world map. Ecotourism believe that there should be sustainable equation between tourist and tourist place. Various aspects related to environmental tourism will be highlighted in this paper. Government efforts for the promotion of ecotourism will be discussed by explaining the tourism policy of India, some acts, rules etc. will also be discussed. The study comes up with some strategies to be adopted and which will lead in promoting the concept of ecotourism for an ecologically sustainable environment.

Keywords: tourism, eco-tourism, sustainable development, tourism policy, sustainable environment

Procedia PDF Downloads 432
1198 Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium

Authors: N. F. M. Mokhtar, N. Z. A. Hamid

Abstract:

This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium.

Keywords: anisotropic, Chebyshev tau method, Coriolis force, Magnetic field

Procedia PDF Downloads 214
1197 Dynamic Analysis of Differential Systems with Infinite Memory and Damping

Authors: Kun-Peng Jin, Jin Liang, Ti-Jun Xiao

Abstract:

In this work, we are concerned with the dynamic behaviors of solutions to some coupled systems with infinite memory, which consist of two partial differential equations where only one partial differential equation has damping. Such coupled systems are good mathematical models to describe the deformation and stress characteristics of some viscoelastic materials affected by temperature change, external forces, and other factors. By using the theory of operator semigroups, we give wellposedness results for the Cauchy problem for these coupled systems. Then, with the help of some auxiliary functions and lemmas, which are specially designed for overcoming difficulties in the proof, we show that the solutions of the coupled systems decay to zero in a strong way under a few basic conditions. The results in this dynamic analysis of coupled systems are generalizations of many existing results.

Keywords: dynamic analysis, coupled system, infinite memory, damping.

Procedia PDF Downloads 220
1196 Lapped Gussets Joints in Compression

Authors: K. R. Tshunza, A. Elvin, A. Gabremmeskel

Abstract:

Final results of an extensive laboratory research program on “lapped gusset joints in compression” are presented. The investigation was carried out at the Heavy structures laboratory at the University of the Witwatersrand in Johannesburg, South Africa. A proposed, relatively easy to use analytical equation was found to be reasonably adequate in determining the global compressive capacity of lapped gussets joints under compressive load. A wide range of lapped mild steel plates of varying slenderness, welded on 219*10 and 127*6 Mild steel circular hollow sections of 1m length were tested in compression and the formula was validated with experimental results. The investigation show that the connection’s capacity is controlled by flexure due to the eccentricity between the plates that are connected side to side.

Keywords: compression, eccentricity, lapped gussets joints, moment resistance

Procedia PDF Downloads 308
1195 Modelling the Growth of σ-Phase in AISI 347H FG Steel

Authors: Yohanes Chekol Malede

Abstract:

σ-phase has negative effects on the corrosion responses and the mechanical properties of steels. The growth of σ-phase in the austenite matrix of AISI 347H FG steel was simulated using DICTRA software using CALPHAD method. The simulation work included the influence of both volume diffusion and grain boundary diffusion. The simulation results showed a good agreement with the experimental findings. The simulation results revealed a Cr-depleted and a Ni-enriched σ-phase/austenite interface. Effects of temperature, grain size, and composition of alloying elements on the growth kinetics of σ-phase were assessed. The simulated results were fitted to the JMAK equation and a good correlation was obtained.

Keywords: AISI 347H FG austenitic steel, CALPHAD, sigma phase, microstructure evolution

Procedia PDF Downloads 148
1194 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.

Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer

Procedia PDF Downloads 455
1193 Household Perspectives and Resistance to Preventive Relocation in Flood Prone Areas: A Case Study in the Polwatta River Basin, Southern Sri Lanka

Authors: Ishara Madusanka, So Morikawa

Abstract:

Natural disasters, particularly floods, pose severe challenges globally, affecting both developed and developing countries. In many regions, especially Asia, riverine floods are prevalent and devastating. Integrated flood management incorporates structural and non-structural measures, with preventive relocation emerging as a cost-effective and proactive strategy for areas repeatedly impacted by severe flooding. However, preventive relocation is often hindered by economic, psychological, social, and institutional barriers. This study investigates the factors influencing resistance to preventive relocation and evaluates the role of flood risk information in shaping relocation decisions through risk perception. A conceptual model was developed, incorporating variables such as Flood Risk Information (FRI), Place Attachment (PA), Good Living Conditions (GLC), and Adaptation to Flooding (ATF), with Flood Risk Perception (FRP) serving as a mediating variable. The research was conducted in Welipitiya in the Polwatta river basin, Matara district, Sri Lanka, a region experiencing recurrent flood damage. For this study, an experimental design involving a structured questionnaire survey was utilized, with 185 households participating. The treatment group received flood risk information, including flood risk maps and historical data, while the control group did not. Data were collected in 2023 and analyzed using independent sample t-tests and Partial Least Squares Structural Equation Modeling (PLS-SEM). PLS-SEM was chosen for its ability to model latent variables, handle complex relationships, and suitability for exploratory research. Multi-group Analysis (MGA) assessed variations across different flood risk areas. Findings indicate that flood risk information had a limited impact on flood risk perception and relocation decisions, though its effect was significant in specific high-risk areas. Place attachment was a significant factor influencing relocation decisions across the sample. One potential reason for the limited impact of flood risk information on relocation decisions could be the lack of specificity in the information provided. The results suggest that while flood risk information alone may not significantly influence relocation decisions, it is crucial in specific contexts. Future studies and practitioners should focus on providing more detailed risk information and addressing psychological factors like place attachments to enhance preventive relocation efforts.

Keywords: flood risk communication, flood risk perception, place attachment, preventive relocation, structural equation modeling

Procedia PDF Downloads 31
1192 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils

Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract:

In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.

Keywords: elasto-plasticity, uncertainty, soils, fokker-planck equation, fourier spectral method, finite difference method

Procedia PDF Downloads 379
1191 Free Vibration Analysis of Symmetric Sandwich Beams

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 474
1190 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model

Authors: Mohammad Zamani, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.

Keywords: circular vertical, spillway, numerical model, boundary conditions

Procedia PDF Downloads 86
1189 The Effect of Dark energy on Amplitude of Gravitational Waves

Authors: Jafar Khodagholizadeh

Abstract:

In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent.

Keywords: gravitational waves, dark energy, GW's amplitude, all stage universe

Procedia PDF Downloads 154
1188 Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients

Authors: Pratik Gandhi, Kavitha Chandra, Charles Thompson

Abstract:

A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated.

Keywords: acoustic room impulse response, frequency dependent reflection coefficients, Green's function, image model

Procedia PDF Downloads 232
1187 A Spectrophotometric Method for the Determination of Folic Acid - A Vitamin B9 in Pharmaceutical Dosage Samples

Authors: Chand Pasha, Yasser Turki Alharbi, Krasamira Stancheva

Abstract:

A simple spectrophotometric method for the determination of folic acid in pharmaceutical dosage samples was developed. The method is based on the diazotization reaction of thiourea with sodium nitrite in acidic medium yields diazonium compounds, which is then coupled with folic acid in basic medium yields yellow coloured azo dyes. Beer’s Lamberts law is observed in the range 0.5 – 16.2 μgmL-1 at a maximum wavelength of 416nm. The molar absorbtivity, sandells sensitivity, linear regression equation and detection limit and quantitation limit were found to be 5.695×104 L mol-1cm-1, 7.752×10-3 g cm-2, y= 0.092x - 0.018, 0.687 g mL-1 and 2.083 g mL-1. This method successfully determined Folate in Pharmaceutical formulations.

Keywords: folic acid determination, spectrophotometry, diazotization, thiourea, pharmaceutical dosage samples

Procedia PDF Downloads 76
1186 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening

Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah

Abstract:

This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.

Keywords: damage mechanics, 3-D numerical analysis, RC, slab with opening

Procedia PDF Downloads 174
1185 Quartic Spline Method for Numerical Solution of Self-Adjoint Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 360
1184 Dynamic Response Analysis of Structure with Random Parameters

Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire

Abstract:

In this paper, we propose a method for the dynamic response of multi-storey structures with uncertain-but-bounded parameters. The effectiveness of the proposed method is demonstrated by a numerical example of three-storey structures. This equation is integrated numerically using Newmark’s method. The numerical results are obtained by the proposed method. The simulation accounting the interval analysis method results are compared with a probabilistic approach results. The interval analysis method provides a mean curve that is between an upper and lower bound obtained from the probabilistic approach.

Keywords: multi-storey structure, dynamic response, interval analysis method, random parameters

Procedia PDF Downloads 190
1183 Principal Well-Being at Hong Kong: A Quantitative Investigation

Authors: Junjun Chen, Yingxiu Li

Abstract:

The occupational well-being of school principals has played a vital role in the pursuit of individual and school wellness and success. However, principals’ well-being worldwide is under increasing threat because of the challenging and complex nature of their work and growing demands for school standardisation and accountability. Pressure is particularly acute in the post-pandemicfuture as principals attempt to deal with the impact of the pandemic on top of more regular demands. This is particularly true in Hong Kong, as school principals are increasingly wedged between unparalleled political, social, and academic responsibilities. Recognizing the semantic breadth of well-being, scholars have not determined a single, mutually agreeable definition but agreed that the concept of well-being has multiple dimensions across various disciplines. The multidimensional approach promises more precise assessments of the relationships between well-being and other concepts than the ‘affect-only’ approach or other single domains for capturing the essence of principal well-being. The multiple-dimension well-being concept is adopted in this project to understand principal well-being in this study. This study aimed to understand the situation of principal well-being and its influential drivers with a sample of 670 principals from Hong Kong and Mainland China. An online survey was sent to the participants after the breakout of COVID-19 by the researchers. All participants were well informed about the purposes and procedure of the project and the confidentiality of the data prior to filling in the questionnaire. Confirmatory factor analysis and structural equation modelling performed with Mplus were employed to deal with the dataset. The data analysis procedure involved the following three steps. First, the descriptive statistics (e.g., mean and standard deviation) were calculated. Second, confirmatory factor analysis (CFA) was used to trim principal well-being measurement performed with maximum likelihood estimation. Third, structural equation modelling (SEM) was employed to test the influential factors of principal well-being. The results of this study indicated that the overall of principal well-being were above the average mean score. The highest ranking in this study given by the principals was to their psychological and social well-being (M = 5.21). This was followed by spiritual (M = 5.14; SD = .77), cognitive (M = 5.14; SD = .77), emotional (M = 4.96; SD = .79), and physical well-being (M = 3.15; SD = .73). Participants ranked their physical well-being the lowest. Moreover, professional autonomy, supervisor and collegial support, school physical conditions, professional networking, and social media have showed a significant impact on principal well-being. The findings of this study will potentially enhance not only principal well-being, but also the functioning of an individual principal and a school without sacrificing principal well-being for quality education in the process. This will eventually move one step forward for a new future - a wellness society advocated by OECD. Importantly, well-being is an inside job that begins with choosing to have wellness, whilst supports to become a wellness principal are also imperative.

Keywords: well-being, school principals, quantitative, influential factors

Procedia PDF Downloads 83
1182 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles

Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine

Abstract:

This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).

Keywords: VO2, VO2(B), MOSFET, gate voltage, humidity sensor

Procedia PDF Downloads 322
1181 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 84
1180 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 95
1179 Geometrically Linear Symmetric Free Vibration Analysis of Sandwich Beam

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 472
1178 Numerical Modeling the Cavitating Flow in Injection Nozzle Holes

Authors: Ridha Zgolli, Hatem Kanfoudi

Abstract:

Cavitating flows inside a diesel injection nozzle hole were simulated using a mixture model. A 2D numerical model is proposed in this paper to simulate steady cavitating flows. The Reynolds-averaged Navier-Stokes equations are solved for the liquid and vapor mixture, which is considered as a single fluid with variable density which is expressed as function of the vapor volume fraction. The closure of this variable is provided by the transport equation with a source term TEM. The processes of evaporation and condensation are governed by changes in pressure within the flow. The source term is implanted in the CFD code ANSYS CFX. The influence of numerical and physical parameters is presented in details. The numerical simulations are in good agreement with the experimental data for steady flow.

Keywords: cavitation, injection nozzle, numerical simulation, k–ω

Procedia PDF Downloads 401
1177 Lie Symmetry Treatment for Pricing Options with Transactions Costs under the Fractional Black-Scholes Model

Authors: B. F. Nteumagne, E. Pindza, E. Mare

Abstract:

We apply Lie symmetries analysis to price and hedge options in the fractional Brownian framework. The reputation of Lie groups is well spread in the area of Mathematical sciences and lately, in Finance. In the presence of transactions costs and under fractional Brownian motions, analytical solutions become difficult to obtain. Lie symmetries analysis allows us to simplify the problem and obtain new analytical solution. In this paper, we investigate the use of symmetries to reduce the partial differential equation obtained and obtain the analytical solution. We then proposed a hedging procedure and calibration technique for these types of options, and test the model on real market data. We show the robustness of our methodology by its application to the pricing of digital options.

Keywords: fractional brownian model, symmetry, transaction cost, option pricing

Procedia PDF Downloads 399
1176 Dynamics Analyses of Swing Structure Subject to Rotational Forces

Authors: Buntheng Chhorn, WooYoung Jung

Abstract:

Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.

Keywords: swing structure, displacement, bearing stress, dynamic loads response, finite element analysis

Procedia PDF Downloads 378
1175 System of Linear Equations, Gaussian Elimination

Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali

Abstract:

In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.

Keywords: direct, indirect, backward stage, forward stage

Procedia PDF Downloads 595