Search results for: time series models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24584

Search results for: time series models

23804 Electrical Characterization of Hg/n-bulk GaN Schottky Diode

Authors: B. Nabil, O. Zahir, R. Abdelaziz

Abstract:

We present the results of electrical characterizations current-voltage and capacity-voltage implementation of a method of making a Schottky diode on bulk gallium nitride doped n. We made temporary Schottky contact of Mercury (Hg) and an ohmic contact of silver (Ag), the electrical characterizations current-voltage (I-V) and capacitance-voltage (C-V) allows us to determine the difference parameters of our structure (Hg /n-GaN) as the barrier height (ΦB), the ideality factor (n), the series resistor (Rs), the voltage distribution (Vd), the doping of the substrate (Nd) and density of interface states (Nss).

Keywords: Bulk Gallium nitride, electrical characterization, Schottky diode, series resistance, substrate doping

Procedia PDF Downloads 485
23803 Liesegang Phenomena: Experimental and Simulation Studies

Authors: Vemula Amalakrishna, S. Pushpavanam

Abstract:

Change and motion characterize and persistently reshape the world around us, on scales from molecular to global. The subtle interplay between change (Reaction) and motion (Diffusion) gives rise to an astonishing intricate spatial or temporal pattern. These pattern formation in nature has been intellectually appealing for many scientists since antiquity. Periodic precipitation patterns, also known as Liesegang patterns (LP), are one of the stimulating examples of such self-assembling reaction-diffusion (RD) systems. LP formation has a great potential in micro and nanotechnology. So far, the research on LPs has been concentrated mostly on how these patterns are forming, retrieving information to build a universal mathematical model for them. Researchers have developed various theoretical models to comprehensively construct the geometrical diversity of LPs. To the best of our knowledge, simulation studies of LPs assume an arbitrary value of RD parameters to explain experimental observation qualitatively. In this work, existing models were studied to understand the mechanism behind this phenomenon and challenges pertaining to models were understood and explained. These models are not computationally effective due to the presence of discontinuous precipitation rate in RD equations. To overcome the computational challenges, smoothened Heaviside functions have been introduced, which downsizes the computational time as well. Experiments were performed using a conventional LP system (AgNO₃-K₂Cr₂O₇) to understand the effects of different gels and temperatures on formed LPs. The model is extended for real parameter values to compare the simulated results with experimental data for both 1-D (Cartesian test tubes) and 2-D(cylindrical and Petri dish).

Keywords: reaction-diffusion, spatio-temporal patterns, nucleation and growth, supersaturation

Procedia PDF Downloads 152
23802 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.

Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis

Procedia PDF Downloads 153
23801 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
23800 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 111
23799 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models

Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel

Abstract:

In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.

Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids

Procedia PDF Downloads 378
23798 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 590
23797 Foodborne Outbreak Calendar: Application of Time Series Analysis

Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova

Abstract:

The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.

Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality

Procedia PDF Downloads 128
23796 Good Governance Complementary to Corruption Abatement: A Cross-Country Analysis

Authors: Kamal Ray, Tapati Bhattacharya

Abstract:

Private use of public office for private gain could be a tentative definition of corruption and most distasteful event of corruption is that it is not there, nor that it is pervasive, but it is socially acknowledged in the global economy, especially in the developing nations. We attempted to assess the interrelationship between the Corruption perception index (CPI) and the principal components of governance indicators as per World Bank like Control of Corruption (CC), rule of law (RL), regulatory quality (RQ) and government effectiveness (GE). Our empirical investigation concentrates upon the degree of reflection of governance indicators upon the CPI in order to single out the most powerful corruption-generating indicator in the selected countries. We have collected time series data on above governance indicators such as CC, RL, RQ and GE of the selected eleven countries from the year of 1996 to 2012 from World Bank data set. The countries are USA, UK, France, Germany, Greece, China, India, Japan, Thailand, Brazil, and South Africa. Corruption Perception Index (CPI) of the countries mentioned above for the period of 1996 to 2012is also collected. Graphical method of simple line diagram against the time series data on CPI is applied for quick view for the relative positions of different trend lines of different nations. The correlation coefficient is enough to assess primarily the degree and direction of association between the variables as we get the numerical data on governance indicators of the selected countries. The tool of Granger Causality Test (1969) is taken into account for investigating causal relationships between the variables, cause and effect to speak of. We do not need to verify stationary test as length of time series is short. Linear regression is taken as a tool for quantification of a change in explained variables due to change in explanatory variable in respect of governance vis a vis corruption. A bilateral positive causal link between CPI and CC is noticed in UK, index-value of CC increases by 1.59 units as CPI increases by one unit and CPI rises by 0.39 units as CC rises by one unit, and hence it has a multiplier effect so far as reduction in corruption is concerned in UK. GE causes strongly to the reduction of corruption in UK. In France, RQ is observed to be a most powerful indicator in reducing corruption whereas it is second most powerful indicator after GE in reducing of corruption in Japan. Governance-indicator like GE plays an important role to push down the corruption in Japan. In China and India, GE is proactive as well as influencing indicator to curb corruption. The inverse relationship between RL and CPI in Thailand indicates that ongoing machineries related to RL is not complementary to the reduction of corruption. The state machineries of CC in S. Africa are highly relevant to reduce the volume of corruption. In Greece, the variations of CPI positively influence the variations of CC and the indicator like GE is effective in controlling corruption as reflected by CPI. All the governance-indicators selected so far have failed to arrest their state level corruptions in USA, Germany and Brazil.

Keywords: corruption perception index, governance indicators, granger causality test, regression

Procedia PDF Downloads 303
23795 Return to Work after a Mental Health Problem: Analysis of Two Different Management Models

Authors: Lucie Cote, Sonia McFadden

Abstract:

Mental health problems in the workplace are currently one of the main causes of absences. Research work has highlighted the importance of a collaborative process involving the stakeholders in the return-to-work process and has established the best management practices to ensure a successful return-to-work. However, very few studies have specifically explored the combination of various management models and determined whether they could satisfy the needs of the stakeholders. The objective of this study is to analyze two models for managing the return to work: the ‘medical-administrative’ and the ‘support of the worker’ in order to understand the actions and actors involved in these models. The study also aims to explore whether these models meet the needs of the actors involved in the management of the return to work. A qualitative case study was conducted in a Canadian federal organization. An abundant internal documentation and semi-directed interviews with six managers, six workers and four human resources professionals involved in the management of records of employees returning to work after a mental health problem resulted in a complete picture of the return to work management practices used in this organization. The triangulation of this data facilitated the examination of the benefits and limitations of each approach. The results suggest that the actions of management for employee return to work from both models of management ‘support of the worker’ and ‘medical-administrative’ are compatible and can meet the needs of the actors involved in the return to work. More research is needed to develop a structured model integrating best practices of the two approaches to ensure the success of the return to work.

Keywords: return to work, mental health, management models, organizations

Procedia PDF Downloads 212
23794 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

Authors: Arnaud Nougues

Abstract:

This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation

Procedia PDF Downloads 221
23793 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 105
23792 Stroke Rehabilitation via Electroencephalogram Sensors and an Articulated Robot

Authors: Winncy Du, Jeremy Nguyen, Harpinder Dhillon, Reinardus Justin Halim, Clayton Haske, Trent Hughes, Marissa Ortiz, Rozy Saini

Abstract:

Stroke often causes death or cerebro-vascular (CV) brain damage. Most patients with CV brain damage lost their motor control on their limbs. This paper focuses on developing a reliable, safe, and non-invasive EEG-based robot-assistant stroke rehabilitation system to help stroke survivors to rapidly restore their motor control functions for their limbs. An electroencephalogram (EEG) recording device (EPOC Headset) and was used to detect a patient’s brain activities. The EEG signals were then processed, classified, and interpreted to the motion intentions, and then converted to a series of robot motion commands. A six-axis articulated robot (AdeptSix 300) was employed to provide the intended motions based on these commends. To ensure the EEG device, the computer, and the robot can communicate to each other, an Arduino microcontroller is used to physically execute the programming codes to a series output pins’ status (HIGH or LOW). Then these “hardware” commends were sent to a 24 V relay to trigger the robot’s motion. A lookup table for various motion intensions and the associated EEG signal patterns were created (through training) and installed in the microcontroller. Thus, the motion intention can be direct determined by comparing the EEG patterns obtaibed from the patient with the look-up table’s EEG patterns; and the corresponding motion commends are sent to the robot to provide the intended motion without going through feature extraction and interpretation each time (a time-consuming process). For safety sake, an extender was designed and attached to the robot’s end effector to ensure the patient is beyond the robot’s workspace. The gripper is also designed to hold the patient’s limb. The test results of this rehabilitation system show that it can accurately interpret the patient’s motion intension and move the patient’s arm to the intended position.

Keywords: brain waves, EEG sensor, motion control, robot-assistant stroke rehabilitation

Procedia PDF Downloads 383
23791 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.

Keywords: speed, Kriging, arterial, traffic volume

Procedia PDF Downloads 353
23790 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model

Authors: Mohammed Nasser Al-Suqri

Abstract:

Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.

Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman

Procedia PDF Downloads 115
23789 Evaluating the Effectiveness of Plantar Sensory Insoles and Remote Patient Monitoring for Early Intervention in Diabetic Foot Ulcer Prevention in Patients with Peripheral Neuropathy

Authors: Brock Liden, Eric Janowitz

Abstract:

Introduction: Diabetic peripheral neuropathy (DPN) affects 70% of individuals with diabetes1. DPN causes a loss of protective sensation, which can lead to tissue damage and diabetic foot ulcer (DFU) formation2. These ulcers can result in infections and lower-extremity amputations of toes, the entire foot, and the lower leg. Even after a DFU is healed, recurrence is common, with 49% of DFU patients developing another ulcer within a year and 68% within 5 years3. This case series examines the use of sensory insoles and newly available plantar data (pressure, temperature, step count, adherence) and remote patient monitoring in patients at risk of DFU. Methods: Participants were provided with custom-made sensory insoles to monitor plantar pressure, temperature, step count, and daily use and were provided with real-time cues for pressure offloading as they went about their daily activities. The sensory insoles were used to track subject compliance, ulceration, and response to feedback from real-time alerts. Patients were remotely monitored by a qualified healthcare professional and were contacted when areas of concern were seen and provided coaching on reducing risk factors and overall support to improve foot health. Results: Of the 40 participants provided with the sensory insole system, 4 presented with a DFU. Based on flags generated from the available plantar data, patients were contacted by the remote monitor to address potential concerns. A standard clinical escalation protocol detailed when and how concerns should be escalated to the provider by the remote monitor. Upon escalation to the provider, patients were brought into the clinic as needed, allowing for any issues to be addressed before more serious complications might arise. Conclusion: This case series explores the use of innovative sensory technology to collect plantar data (pressure, temperature, step count, and adherence) for DFU detection and early intervention. The results from this case series suggest the importance of sensory technology and remote patient monitoring in providing proactive, preventative care for patients at risk of DFU. This robust plantar data, with the addition of remote patient monitoring, allow for patients to be seen in the clinic when concerns arise, giving providers the opportunity to intervene early and prevent more serious complications, such as wounds, from occurring.

Keywords: diabetic foot ulcer, DFU prevention, digital therapeutics, remote patient monitoring

Procedia PDF Downloads 77
23788 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption

Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.

Abstract:

The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.

Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design

Procedia PDF Downloads 79
23787 Economic Analysis of Rainwater Harvesting Systems for Dairy Cattle

Authors: Sandra Cecilia Muhirirwe, Bart Van Der Bruggen, Violet Kisakye

Abstract:

Economic analysis of Rainwater harvesting (RWH) systems is vital in search of a cost-effective solution to water unreliability, especially in low-income countries. There is little literature focusing on the financial aspects of RWH for dairy farmers. The main purpose was to assess the economic viability of rainwater harvesting for diary framers in the Rwenzori region. The study focused on the use of rainwater harvesting systems from the rooftop and collection in above surface tanks. Daily rainfall time series for 12 years was obtained across nine gauging stations. The daily water balance equation was used for optimal sizing of the tank. Economic analysis of the investment was carried out based on the life cycle costs and the accruing benefits for the period of 15 years. Roof areas were varied from 75m2 as the minimum required area to 500m2 while maintaining the same number of cattle and keeping the daily water demand constant. The results show that the required rainwater tank sizes are very large and may be impractical to install due to the strongly varying terrain and the initial cost of investment. In all districts, there is a significant reduction of the volume of the required tank with an increasing collection area. The results further show that increasing the collection area has a minor effect on reducing the required tank size. Generally, for all rainfall areas, the reliability increases with an increase in the roof area. The results indicate that 100% reliability can only be realized with very large collection areas that are impractical to install. The estimated benefits outweigh the cost of investment. The Present Net Value shows that the investment is economically viable and investment with a short payback of a maximum of 3 years for all the time series in the study area.

Keywords: dairy cattle, optimisation, rainwater harvesting, economic analysis

Procedia PDF Downloads 204
23786 Environmental Impact Assessment in Mining Regions with Remote Sensing

Authors: Carla Palencia-Aguilar

Abstract:

Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.

Keywords: carbon dioxide, NPP, MODIS, MINING

Procedia PDF Downloads 104
23785 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles

Authors: Kang Hyun Yi

Abstract:

This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.

Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output

Procedia PDF Downloads 1052
23784 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia

Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez

Abstract:

This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.

Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models

Procedia PDF Downloads 189
23783 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity

Procedia PDF Downloads 433
23782 A New Asset: The Role of Money in the Evolution of 20th Century Street Art

Authors: Eileen Kim

Abstract:

As socioeconomic disparities grew in New York during the 1970s, artists represented new values that came with the times. Street art, in particular, was birthed from a distinctly urban, fringe setting to ultimately become one of the most lucrative forms of art today. Examining the economic and psychological reasons behind the rise of street art, this paper delves into the development of the art market as a parallel insight into human behaviors and economic models such as supply and demand. The purpose of this study is to show the role of the increasingly divided socioeconomic classes and the rise of art collecting as an asset-building form. This study concludes that the iconography and market value of street art represented distinct values that came from a series of intertwined social matters such as racial tensions and revolutions in industrial innovation.

Keywords: art industry, cultural representation, ethnicity, markets, public property, social classes, street art

Procedia PDF Downloads 230
23781 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 196
23780 Predominance of Teaching Models Used by Math Teachers in Secondary Education

Authors: Verónica Diaz Quezada

Abstract:

This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.

Keywords: teaching models, math teachers, functions, secondary education

Procedia PDF Downloads 189
23779 A Data-Mining Model for Protection of FACTS-Based Transmission Line

Authors: Ashok Kalagura

Abstract:

This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.

Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC

Procedia PDF Downloads 423
23778 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations

Authors: Sarra Hasni, Sami Faiz

Abstract:

In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.

Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation

Procedia PDF Downloads 25
23777 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 80
23776 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening

Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang

Abstract:

In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.

Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems

Procedia PDF Downloads 128
23775 New Chinese Landscapes in the Works of the Chinese Photographer Yao Lu

Authors: Xiaoling Dai

Abstract:

Many Chinese artists have used digital photography to create works with features of Chinese landscape paintings since the 20th century. The ‘New Mountains and Water’ works created by digital techniques reflect the fusion of photographic techniques and traditional Chinese aesthetic thoughts. Borrowing from Chinese landscape paintings in the Song Dynasty, the Chinese photographer Yao Lu uses digital photography to reflect contemporary environmental construction in his series New Landscapes. By portraying a variety of natural environments brought by urbanization in the contemporary period, Lu deconstructs traditional Chinese paintings and reconstructs contemporary photographic practices. The primary object of this study is to investigate how Chinese photographer Yao Lu redefines and re-interprets the relationship between tradition and contemporaneity. In this study, Yao Lu’s series work New Landscapes is used for photo elicitation, which seeks to broaden understanding of the development of Chinese landscape photography. Furthermore, discourse analysis will be used to evaluate how Chinese social developments influence the creation of photographic practices. Through visual and discourse analysis, this study aims to excavate the relationship between tradition and contemporaneity in Lu’s works. According to New Landscapes, the study argues that in Lu’s interpretations of landscapes, tradition and contemporaneity are seen to establish a new relationship. Traditional approaches to creation do not become obsolete over time. On the contrary, traditional notions and styles of creation can shed new light on contemporary issues or techniques.

Keywords: Chinese aesthetics, Yao Lu, new landscapes, tradition, contemporaneity

Procedia PDF Downloads 79