Search results for: single error upset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6257

Search results for: single error upset

5477 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 336
5476 Functionalization of Single-Walled Nanotubes by Synthesied Pigments

Authors: Shahab Zomorodbakhsh, Hayron Nesa Motevasel

Abstract:

Water soluble compoundes were attached to single-walled carbon nanotubes (SWNTs) to form water-soluble nano pigments. functionalized SWNTs were then characterized by Fourier Transform Infrared spectroscopy (FT-IR), Raman spectroscopy, UV analysis, Transmission electron microscopy (TEM)and defunctionalization test and Representative results concerning the solubility. The product can be dissolved in water and High-resolution transmission electron microscope images showed that the SWNTs were efficiently functionalized, thus the p-stacking interaction between aromatic rings and COOH of SWNTs was considered responsible for the high solubility and High transmission electron in singlewall nanotubes.

Keywords: functionalized CNTs, singlewalled carbon nanotubes, water soluble compoundes, nano pigments

Procedia PDF Downloads 302
5475 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 40
5474 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC

Authors: Salman Hameed

Abstract:

In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.

Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor

Procedia PDF Downloads 412
5473 Reusing of HSS Hacksaw Blades as Rough Machining Tool

Authors: Raja V., Chokkalingam B.

Abstract:

For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.

Keywords: hardness, high speed steels, power hacksaw blade, tensile strength

Procedia PDF Downloads 446
5472 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling

Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski

Abstract:

This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.

Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS

Procedia PDF Downloads 64
5471 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach

Authors: Gerardo Ayala Jaimes, Gilberto Gonzalez Avalos, Allen A. Castillo, Alejandra Jiménez Vega

Abstract:

The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.

Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling

Procedia PDF Downloads 19
5470 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists

Authors: K. Hołda, D. Śliwa, K. Daniec, A. Nawrat

Abstract:

This article was created as part of the developed master's thesis. It attempts to present a newly developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the following article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.

Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing

Procedia PDF Downloads 109
5469 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network

Authors: Amit Verma, Pardeep Kaur

Abstract:

In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.

Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval

Procedia PDF Downloads 371
5468 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 311
5467 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities

Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh

Abstract:

Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.

Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise

Procedia PDF Downloads 291
5466 Resistance to the South African Root-Knot Nematode Population Densities in Artemisia annua: An Anti-Malaria Ethnomedicinal Plant

Authors: Kgabo Pofu, Hintsa Araya, Dean Oelofse, Sonja Venter, Christian Du Plooy, Phatu Mashela

Abstract:

Nematode resistance to the tropical root-knot (Meloidogyne species) nematodes is one of the most preferred nematode management strategies in development of smallholder resource-poor farming systems. Due to its pharmacological and ethnomedicinal applications, Artemisia annua is one of the underutilised crops that have attracted attention of policy-makers in rural agrarian development in South Africa. However, the successful introduction of this crop in smallholder resource-poor farming systems could be upset by the widespread aggressive Meloidogyne species, which have limited management options. The objective of this study therefore was to determine the degree of nematode resistance to the South African M. incognita and M. javanica population densities on A. annua seedlings. Uniform three-week-old seedlings in pots containing pasteurised growing medium under greenhouse conditions were inoculated using a series of eggs and second-stage juveniles of two Meloidogyne species in separate trials. At 56 days after inoculation, treatments were highly significant on reproductive factor (RF) for M. incognita and M. javanica on A. annua, contributing 87 and 89% in total treatment variation of the variables, respectively. At all levels of inoculation, RF values for M. incognita (0.17-0.79) and M. javanica (0.02-0.29) were below unity, without any noticeable root galls. Infection of A. annua by both Meloidogyne species had no significant effects on growth variables. In conclusion, A. annua seedlings are resistant to the South African M. incognita and M. javanica population densities and could therefore be explored further for use in smallholder resource-poor farming systems.

Keywords: ethnomedicial plants, medicinal plants, underutilised crops, plant parasitic nematodes

Procedia PDF Downloads 291
5465 Cross-Sectional Study Investigating the Prevalence of Uncorrected Refractive Error and Visual Acuity through Mobile Vision Screening in the Homeless in Wales

Authors: Pakinee Pooprasert, Wanxin Wang, Tina Parmar, Dana Ahnood, Tafadzwa Young-Zvandasara, James Morgan

Abstract:

Homelessness has been shown to be correlated to poor health outcomes, including increased visual health morbidity. Despite this, there are relatively few studies regarding visual health in the homeless population, especially in the UK. This research aims to investigate visual disability and access barriers prevalent in the homeless population in Cardiff, South Wales. Data was collected from 100 homeless participants in three different shelters. Visual outcomes included near and distance visual acuity as well as non-cycloplegic refraction. Qualitative data was collected via a questionnaire and included socio-demographic profile, ocular history, subjective visual acuity and level of access to healthcare facilities. Based on the participants’ presenting visual acuity, the total prevalence of myopia and hyperopia was 17.0% and 19.0% respectively based on spherical equivalent from the eye with the greatest absolute value. The prevalence of astigmatism was 8.0%. The mean absolute spherical equivalent was 0.841D and 0.853D for right and left eye respectively. The number of participants with sight loss (as defined by VA= 6/12-6/60 in the better-seeing eye) was 27.0% in comparison to 0.89% and 1.1% in the general Cardiff and Wales population respectively (p-value is < 0.05). Additionally, 1.0% of the homeless subjects were registered blind (VA less than 3/60), in comparison to 0.17% for the national consensus after age standardization. Most participants had good knowledge regarding access to prescription glasses and eye examination services. Despite this, 85.0% never had their eyes examined by a doctor and 73.0% had their last optometrist appointment in more than 5 years. These findings suggested that there was a significant disparity in ocular health, including visual acuity and refractive error amongst the homeless in comparison to the general population. Further, the homeless were less likely to receive the same level of support and continued care in the community due to access barriers. These included a number of socio-economic factors such as travel expenses and regional availability of services, as well as administrative shortcomings. In conclusion, this research demonstrated unmet visual health needs within the homeless, and that inclusive policy changes may need to be implemented for better healthcare outcomes within this marginalized community.

Keywords: homelessness, refractive error, visual disability, Wales

Procedia PDF Downloads 154
5464 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality

Authors: Georgi Bebrov, Rozalina Dimova

Abstract:

In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.

Keywords: quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality

Procedia PDF Downloads 174
5463 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online

Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal

Abstract:

This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.

Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion

Procedia PDF Downloads 46
5462 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: wavelet transform, computational error, computational duration, strong ground motion data

Procedia PDF Downloads 368
5461 Simplified Stress Gradient Method for Stress-Intensity Factor Determination

Authors: Jeries J. Abou-Hanna

Abstract:

Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress gradient

Procedia PDF Downloads 127
5460 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: discrete set, linear combinatorial optimization, multi-objective optimization, Pareto solutions, partial permutation set, structural graph

Procedia PDF Downloads 156
5459 Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study

Authors: S. Chandrakaran, Aarthy D.

Abstract:

Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compression

Keywords: load capcity, under remed bulb . sand, model study, sand

Procedia PDF Downloads 71
5458 Reliable and Error-Free Transmission through Multimode Polymer Optical Fibers in House Networks

Authors: Tariq Ahamad, Mohammed S. Al-Kahtani, Taisir Eldos

Abstract:

Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fiber. In this research article we have explored basic issues in terms of security and reliability for secure and reliable information transfer through the fiber infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibers can easily support hundreds of spatial modes, but today’s commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals. Bandwidth, performance, reliability, cost efficiency, resiliency, redundancy, and security are some of the demands placed on telecommunications today. Since its initial development, fiber optic systems have had the advantage of most of these requirements over copper-based and wireless telecommunications solutions. The largest obstacle preventing most businesses from implementing fiber optic systems was cost. With the recent advancements in fiber optic technology and the ever-growing demand for more bandwidth, the cost of installing and maintaining fiber optic systems has been reduced dramatically. With so many advantages, including cost efficiency, there will continue to be an increase of fiber optic systems replacing copper-based communications. This will also lead to an increase in the expertise and the technology needed to tap into fiber optic networks by intruders. As ever before, all technologies have been subject to hacking and criminal manipulation, fiber optics is no exception. Researching fiber optic security vulnerabilities suggests that not everyone who is responsible for their networks security is aware of the different methods that intruders use to hack virtually undetected into fiber optic cables. With millions of miles of fiber optic cables stretching across the globe and carrying information including but certainly not limited to government, military, and personal information, such as, medical records, banking information, driving records, and credit card information; being aware of fiber optic security vulnerabilities is essential and critical. Many articles and research still suggest that fiber optics is expensive, impractical and hard to tap. Others argue that it is not only easily done, but also inexpensive. This paper will briefly discuss the history of fiber optics, explain the basics of fiber optic technologies and then discuss the vulnerabilities in fiber optic systems and how they can be better protected. Knowing the security risks and knowing the options available may save a company a lot embarrassment, time, and most importantly money.

Keywords: in-house networks, fiber optics, security risk, money

Procedia PDF Downloads 411
5457 Rethinking Gender Roles within the Family: Single Fathers and the Domestic Sphere

Authors: Mohamad Chour

Abstract:

Nowadays, a record number of households are headed by single fathers in most of the European societies. Our research aims to explore how French single fathers experience the domestic sphere, a traditionally feminized field while accomplishing their role of fathers. We adopt a gender role and a parenting role construction theoretical perspectives. Indeed, the interior domestic sphere has been traditionally considered as related to the role of the mother. Moreover, according to the masculine domination theory of Bourdieu, men avoid caregiving and domestic practices that are economically and culturally undervalued. Hence, mothers are considered as more likely to handle the expressive dimension of duties whereas fathers’ role is represented as instrumental, functional and independent. Long interviews have been conducted with twenty French single fathers in order to investigate how the absence of the mother affects the practices of fatherhood. We combined the long interviews with projective techniques method in order to better understand their conception of the family and their family values. Seeking a qualitative diversity, our respondents are from various ages (between 30 and 60); they are coming from different regions in France; living in rural, semi-rural and urban areas. Based on the analysis of 427 pages of data, we identify three main categories of single fathers depending on their strategies to copy and/or delegate the role of the mother. 1) Nurturing fathers completely assume the role of the absent mother as well as her functions. Their discourse is characterized by abnegation and sacrifices reflecting a nurturing role. 2) Juggling fathers are those who take charge of a part of the household duties and delegate the other part to the market or to 'feminine resources' for lacking skills or time. 3) Resistant fathers are the very few respondents who refuse to assume any activities related to the domestic sphere that they perceive as feminine. For lacking competences and even for ideological reasons, they have tendency to delegate all the tasks that were assumed by their ex-spouses. Generally, the majority of fathers seem to experience the domestic sphere differently, and their domestic involvement has been underestimated and even misunderstood. Household duties such as cooking and housekeeping in addition to the nurturing role are experienced by many of the respondents as constructing elements of their fatherhood. Our respondents do not seem to accomplish house holding duties in a functional way. The domestic sphere is managed by those fathers with a strong dimension of abnegation. Thus, our research contributes to illustrating the evolution of gender roles and shows how being simultaneously 'a father and a mother' seems to be an emerging social norm in a French and European cultural context.

Keywords: fathering, gender roles, gender studies, identity construction, single fathers

Procedia PDF Downloads 125
5456 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 64
5455 Assessment of an ICA-Based Method for Detecting the Effect of Attention in the Auditory Late Response

Authors: Siavash Mirahmadizoghi, Steven Bell, David Simpson

Abstract:

In this work a new independent component analysis (ICA) based method for noise reduction in evoked potentials is evaluated on for auditory late responses (ALR) captured with a 63-channel electroencephalogram (EEG) from 10 normal-hearing subjects. The performance of the new method is compared with a single channel alternative in terms of signal to noise ratio (SNR), the number of channels with an SNR above an empirically derived statistical critical value and an estimate of the effect of attention on the major components in the ALR waveform. The results show that the multichannel signal processing method can significantly enhance the quality of the ALR signal and also detect the effect of the attention on the ALR better than the single channel alternative.

Keywords: auditory late response (ALR), attention, EEG, independent component analysis (ICA), multichannel signal processing

Procedia PDF Downloads 495
5454 Efficiency Improvement of REV-Method for Calibration of Phased Array Antennas

Authors: Daniel Hristov

Abstract:

The paper describes the principle of operation, simulation and physical validation of method for simultaneous acquisition of gain and phase states of multiple antenna elements and the corresponding feed lines across a Phased Array Antenna (PAA). The derived values for gain and phase are used for PAA-calibration. The method utilizes the Rotating-Element Electric- Field Vector (REV) principle currently used for gain and phase state estimation of single antenna element across an active antenna aperture. A significant reduction of procedure execution time is achieved with simultaneous setting of different phase delays to multiple phase shifters, followed by a single power measurement. The initial gain and phase states are calculated using spectral and correlation analysis of the measured power series.

Keywords: antenna, antenna arrays, calibration, phase measurement, power measurement

Procedia PDF Downloads 126
5453 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 231
5452 Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force

Authors: Abdelouaheb Rouabhi

Abstract:

In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS.

Keywords: elastic-plastic, single degree of freedom model, rigid-plastic system, plastic resource, complex plastic deformation, macro-model

Procedia PDF Downloads 373
5451 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database

Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan

Abstract:

Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.

Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database

Procedia PDF Downloads 559
5450 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 22
5449 The Status of the Actio Popularis under International Environmental Law in Cases of Damage to Global Commons

Authors: Aimite Jorge, Leenekela Usebiu

Abstract:

In recent years the International Community has seen a rise of what can be termed as ‘actio popularis”;that is to say lawsuits brought by third parties in the interest of the public or the world community as a whole, such as in cases of genocide and terrorism prosecutions under international law. It is equally clear that under current globalized world the effect of multinational activities on the environment is often felt beyond the borders of the territories where they operate. Equally true is the fact that the correspondence of citizens self-determination with national government is increasingly upset by the increasing willingness of states to share some ‘sovereign powers’ in order to address new economic, environmental and security interdependencies. The ‘unbundling’ of functional governance from fixed territories sees continuously citizens give up their formal approval of key decisions in exchange for a more remote, indirect say in supra-national or international decision-making bodies. The efforts to address a growing transnational flow of ecological harm are at the forefront of such indirect transformations, as evidenced by a proliferation of multilateral environmental agreements (MEAs) over the past three decades. However, unlike the defence of the global commons in cases of terrorism and genocide, there is still to be a clear application of action popularis in the case of environment, despite acknowledgement that the effect of the activities of several multinationals on the environment is as destructive to the global commons as genocide or terrorism are. Thus, this paper looking at specific cases of harmful degradation of the environment by certain multinationals transcending national boundaries, argues that it is high-time for a serious consideration of the application of the actio-popularis to environmental concerns. Although it is acknowledged that in international environmental law the challenge to reach a “critical mass” of recognition and support for an ‘actio-popularis’ for environment damage is particularly demanding, it is worth the try.

Keywords: actio popularis in environment law, global commons, transnational environmental damage, law and environment

Procedia PDF Downloads 553
5448 Mechanical Behavior of PVD Single Layer and Multilayer under Indentation Tests

Authors: K. Kaouther, D. Hafedh, A. Ben Cheikh Larbi

Abstract:

Various structures and compositions thin films were deposited on 100C6 (AISI 52100) steel substrate by PVD magnetron sputtering system. The morphological proprieties were evaluated using an atomic force microscopy (AFM). Vickers microindentation tests were performed with a Shimadzu HMV-2000 hardness testing machine. Hardness measurement was carried out using Jonsson and Hogmark model. The results show that the coatings topography was dominated by domes and craters. Mechanical behavior and failure modes under microindentation were depending of coatings structure and composition. TiAlN multilayer showed exception in the microindentation resistance compared to TiN single layer and TiAlN/TiAlN nanolayer. Piled structure provides an increase of failure resistance and a decrease in cracks propagation.

Keywords: PVD thin films, multilayer, microindentation, cracking, damage mechanisms

Procedia PDF Downloads 395