Search results for: signal detection theory
8541 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions
Authors: Nisha Dhariwal, Anupama Sharma
Abstract:
The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization
Procedia PDF Downloads 3018540 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach
Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf
Abstract:
Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.Keywords: classification, defect, surface, detection, hole
Procedia PDF Downloads 168539 Minimizing the Impact of Covariate Detection Limit in Logistic Regression
Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque
Abstract:
In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution
Procedia PDF Downloads 2368538 Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients
Authors: Zerihun Ketema Tadesse, Dabbu Suman Reddy
Abstract:
Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards.Keywords: SSVEP-BCI, Limb Disabled Patients, LED Visual Stimulator, EEG signal, control devices, hospital room/wards
Procedia PDF Downloads 2218537 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 2658536 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)
Authors: Natalia Lukasik, Ewa Wagner-Wysiecka
Abstract:
Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor
Procedia PDF Downloads 1548535 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 918534 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 2898533 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 1998532 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.Keywords: EEG, epilepsy, phase correlation, seizure
Procedia PDF Downloads 3098531 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 168530 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 578529 The Instruction of Imagination: A Theory of Language as a Social Communication Technology
Authors: Daniel Dor
Abstract:
The research presents a new general theory of language as a socially-constructed communication technology, designed by cultural evolution for a very specific function: the instruction of imagination. As opposed to all the other systems of intentional communication, which provide materials for the interlocutors to experience, language allows speakers to instruct their interlocutors in the process of imagining the intended meaning-instead of experiencing it. It is thus the only system that bridges the experiential gaps between speakers. This is the key to its enormous success.Keywords: experience, general theory of language, imagination, language as technology, social essence of language
Procedia PDF Downloads 5868528 On the Representation of Actuator Faults Diagnosis and Systems Invertibility
Authors: F. Sallem, B. Dahhou, A. Kamoun
Abstract:
In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.Keywords: actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion
Procedia PDF Downloads 4058527 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients
Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner
Abstract:
In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring
Procedia PDF Downloads 2318526 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab
Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco
Abstract:
Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus
Procedia PDF Downloads 668525 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 598524 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 2458523 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam
Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai
Abstract:
This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.Keywords: composite girder, Elastic Theory, preflex beam, prestressing
Procedia PDF Downloads 2798522 A Dynamic Neural Network Model for Accurate Detection of Masked Faces
Authors: Oladapo Tolulope Ibitoye
Abstract:
Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.Keywords: convolutional neural network, face detection, face mask, masked faces
Procedia PDF Downloads 688521 Using Multiple Intelligences Theory to Develop Thai Language Skill
Authors: Bualak Naksongkaew
Abstract:
The purposes of this study were to compare pre- and post-test achievement of Thai language skills. The samples consisted of 40 tenth grader of Secondary Demonstration School of Suan Sunandha Rajabhat University in the first semester of the academic year 2010. The researcher prepared the Thai lesson plans, the pre- and post-achievement test at the end program. Data analyses were carried out using means, standard deviations and descriptive statistics, independent samples t-test analysis for comparison pre- and post-test. The study showed that there were a statistically significant difference at α= 0.05; therefore the use multiple intelligences theory can develop Thai languages skills. The results after using the multiple intelligences theory for Thai lessons had higher level than standard.Keywords: multiple intelligences theory, Thai language skills, development, pre- and post-test achievement
Procedia PDF Downloads 4258520 A Framework for Investigating Reverse Logistics Capability of E-Tailers
Authors: Wen-Shan Lin, Shu-Lu Hsu
Abstract:
Environmental concern and consumer rights have entailed e-tailers to adopt better strategies to facilitate product returns from customers. As the demand for reverse logistics (RL) continues to grow, little is known about what motivates e-tailers to enhance their RL capabilities and about the role RL capabilities plays in enabling e-tailers to achieve better customer satisfaction and economic performance. Based on resource-based theory and institutional theory, this article proposes that the following factors play a critical role in influencing the RL capability of e-tailers: (a) Financial resource commitment to RL, (b) managerial resource commitment to RL, and (c) institutional pressure to implement RL. Based on the role of these factors, the study provides a framework and propositions that serve to guide future research addressing the link among resources, institutional pressure, and RL capability.Keywords: reverse logistics, e-tailing, resource-based theory, institutional theory
Procedia PDF Downloads 4498519 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique
Authors: Saumya Srivastava, Rina Maiti
Abstract:
In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine
Procedia PDF Downloads 1248518 Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations
Authors: A. Azari, S. S. K. Seyyedi
Abstract:
One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided.Keywords: molecular, noise, diffusion, channel
Procedia PDF Downloads 2798517 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC
Authors: Zhongjie Yu, Hancheng Yu
Abstract:
In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC
Procedia PDF Downloads 1318516 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 1738515 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 4358514 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength
Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma
Abstract:
The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.
Procedia PDF Downloads 578513 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise
Procedia PDF Downloads 4898512 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images
Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj
Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization
Procedia PDF Downloads 133