Search results for: rainbow experiments
2509 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma
Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze
Abstract:
The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.Keywords: collisional, cold plasma, rectangular pulse signal, impulse envelope
Procedia PDF Downloads 3832508 Experimental Studies of Dragonfly Flight Aerodynamics
Authors: Mohd Izmir Bin Yamin, Thomas Arthur Ward
Abstract:
Past aerodynamic studies of flapping wing flight have shown that it has increased aerodynamic performances compared to fixed wing steady flight. One of the dominant mechanisms that is responsible for causing this phenomenon is a leading edge vortex, generated by the flapping motion of a flexible wing. Wind tunnel experiments were conducted to observe the aerodynamic profile of a flapping wing, by measuring the lift, drag and thrust. Analysis was done to explain how unsteady aerodynamics leads towards better power performances than a fixed wing flight. The information from this study can be used as a base line for designing future Bio-mimetic Micro Air Vehicles that are based on flying insect aerodynamic mechanisms.Keywords: flapping wing flight, leading edge vortex, aerodynamics performances, wind tunnel test
Procedia PDF Downloads 3872507 A Comparison between Reagents Extracted from Tree Leaves for Spectrophotometric Determination of Hafnium(IV)
Authors: A. Boveiri Monji, H. Yousefnia, S. Zolghadri, B. Salimi
Abstract:
The main goal of this paper was to make use of green reagents as a substitute of perilous synthetic reagents and organic solvents for spectrophotometric determination of hafnium(IV). The extracts taken from six different kinds of tree leaves including Acer negundo, Ficus carica, Cerasus avium, Chimonanthus, Salix babylonica and Pinus brutia, were applied as green reagents for the experiments. In 6-M hydrochloric acid, hafnium reacted with the reagent to form a yellow product and showed maximum absorbance at 421 nm. Among tree leaves, Chimonanthus showed satisfactory results with a molar absorptivity value of 0.61 × 104 l mol-1 cm-1 and the method was linear in the 0.3-9 µg mL -1 concentration range. The detection limit value was 0.064 µg mL-1. The proposed method was simple, low cost, clean, and selective.Keywords: hafnium, spectrophotometric determination, synthetic reagents, tree leaves
Procedia PDF Downloads 1892506 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
A kinetic façade responds to user requirements and environmental conditions. In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization
Procedia PDF Downloads 5202505 Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network
Authors: Sheng Fu, Yinbo Gao, Hao Lin
Abstract:
In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors.Keywords: condition monitoring, wireless sensor network, air compressor, zigbee, data collecting
Procedia PDF Downloads 5082504 The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates
Authors: E. Moroydor Derun, N. Tugrul, F. T. Senberber, A. S. Kipcak, S. Piskin
Abstract:
In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80°C reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals.Keywords: hydrothermal synthesis, copper borates, copper sulfate, tincalconite
Procedia PDF Downloads 3812503 Modeling of Bioelectric Activity of Nerve Cells Using Bond Graph Method
Authors: M. Ghasemi, F. Eskandari, B. Hamzehei, A. R. Arshi
Abstract:
Bioelectric activity of nervous cells might be changed causing by various factors. This alteration can lead to unforeseen circumstances in other organs of the body. Therefore, the purpose of this study was to model a single neuron and its behavior under an initial stimulation. This study was developed based on cable theory by means of the Bond Graph method. The numerical values of the parameters were derived from empirical studies of cellular electrophysiology experiments. Initial excitation was applied through square current functions, and the resulted action potential was estimated along the neuron. The results revealed that the model was developed in this research adapted with the results of experimental studies and demonstrated the electrical behavior of nervous cells properly.Keywords: bond graph, stimulation, nervous cells, modeling
Procedia PDF Downloads 4302502 Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides
Authors: Satyanarayana Kosaraju, Venu Gopal Anne, Sateesh Nagari
Abstract:
In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased.Keywords: cutting force, tool tip temperature, rake angle, machining
Procedia PDF Downloads 5072501 Behavioral Experiments of Small Societies in Social Media: Facebook Expressions of Anchored Relationships
Authors: Nuran Öze
Abstract:
Communities and societies have been changing towards computer mediated communication. This paper explores online and offline identities and how relationships are formed and negotiated within internet environments which offer opportunities for people who know each other offline and move into relationships online. The expectations and norms of behavior within everyday life cause people to be embodied self. According to the age categories of Turkish Cypriots, their measurements of attitudes in Facebook will be investigated. Face-to-face field research and semi-structured interview methods are used in the study. Face-to-face interview has been done with Turkish Cypriots who are using Facebook already. According to the study, in constructing a linkage between real and virtual identities mostly affected from societal relations serves as a societal grooming tool for Turkish Cypriots.Keywords: facebook, identity, social media, virtual reality
Procedia PDF Downloads 3042500 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 3552499 Simulation Data Summarization Based on Spatial Histograms
Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura
Abstract:
In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.Keywords: simulation data, data summarization, spatial histograms, exploration, visualization
Procedia PDF Downloads 1772498 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2022497 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles
Authors: I. Graur, V. Bria, C. Muntenita
Abstract:
Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.Keywords: epoxy, friction coefficient, organic powder, pine needles
Procedia PDF Downloads 1772496 Nitrate Photoremoval in Water Using Nanocatalysts Based on Ag / Pt over TiO2
Authors: Ana M. Antolín, Sandra Contreras, Francesc Medina, Didier Tichit
Abstract:
Introduction: High levels of nitrates (> 50 ppm NO3-) in drinking water are potentially risky to human health. In the recent years, the trend of nitrate concentration in groundwater is rising in the EU and other countries. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic intermediates and by-products, such as NO2-, NH4+, and NOx gases. Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly technique. It has been scarcely performed and more research on highly efficient catalysts is still needed. In this work, different nanocatalysts supported on Aeroxide Titania P25 (P25) have been prepared varying: 0.5-4 % wt. Ag); Pt (2, 4 % wt.); Pt precursor (H2PtCl6/K2PtCl6); and impregnation order of both metals. Pt was chosen in order to increase the selectivity to N2 and decrease that to NO2-. Catalysts were characterized by nitrogen physisorption, X-Ray diffraction, UV-visible spectroscopy, TEM and X Ray-Photoelectron Spectroscopy. The aim was to determine the influence of the composition and the preparation method of the catalysts on the conversion and selectivity in the nitrate reduction, as well as going through an overall and better understanding of the process. Nanocatalysts synthesis: For the mono and bimetallic catalysts preparation, wise-drop wetness impregnation of the precursors (AgNO3, H2PtCl6, K2PtCl6) followed by a reduction step (NaBH4) was used to obtain the metal colloids. Results and conclusions: Denitration experiments were performed in a 350 mL PTFE batch reactor under inert standard operational conditions, ultraviolet irradiations (λ=254 nm (UV-C); λ=365 nm (UV-A)), and presence/absence of hydrogen gas as a reducing agent, contrary to most studies using oxalic or formic acid. Samples were analyzed by Ionic Chromatography. Blank experiments using respectively P25 (dark conditions), hydrogen only and UV irradiations without hydrogen demonstrated a clear influence of the presence of hydrogen on nitrate reduction. Also, they demonstrated that UV irradiation increased the selectivity to N2. Interestingly, the best activity was obtained under ultraviolet lamps, especially at a closer wavelength to visible light irradiation (λ = 365 nm) and H2. 2% Ag/P25 leaded to the highest NO3- conversion among the monometallic catalysts. However, nitrite quantities have to be diminished. On the other hand, practically no nitrate conversion was observed with the monometallics based on Pt/P25. Therefore, the amount of 2% Ag was chosen for the bimetallic catalysts. Regarding the bimetallic catalysts, it is observed that the metal impregnation order, amount and Pt precursor highly affects the results. Higher selectivity to the desirable N2 gas is obtained when Pt was firstly added, especially with K2PtCl6 as Pt precursor. This suggests that when Pt is secondly added, it covers the Ag particles, which are the most active in this reaction. It could be concluded that Ag allows the nitrate reduction step to nitrite, and Pt the nitrite reduction step toward the desirable N2 gas.Keywords: heterogeneous catalysis, hydrogenation, nanocatalyst, nitrate removal, photocatalysis
Procedia PDF Downloads 2732495 An Algorithm for Herding Cows by a Swarm of Quadcopters
Authors: Jeryes Danial, Yosi Ben Asher
Abstract:
Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups.Keywords: swarm, independent, distributed, algorithm
Procedia PDF Downloads 1782494 The Effects of Different Amounts of Additional Moisture on the Physical Properties of Cow Pea (Vigna unguiculata (L.) Walp.) Extrudates
Authors: L. Strauta, S. Muižniece-Brasava
Abstract:
Even though legumes possess high nutritional value and have a rather high protein content for plant origin products, they are underutilized mostly due to their lengthy cooking time. To increase the presence of legume-based products in human diet, new extruded products were made of cow peas (Vigna unguiculata (L.) Walp.). But as it is known, adding different moisture content to flour before extrusion can change the physical properties of the extruded product. Experiments were carried out to estimate the optimal moisture content for cow pea extrusion. After extrusion, the pH level had dropped from 6.7 to 6.5 and the lowest hardness rate was observed in the samples with additional 9 g 100g-1 of moisture - 28±4N, but the volume mass of the samples with additional 9 g100g-1 of water was 263±3 g L-1; all samples were approximately 7±1mm long.Keywords: cow pea, extrusion–cooking, moisture, size
Procedia PDF Downloads 2082493 Release of PVA from PVA/PA Compounds into Water Solutions
Authors: J. Klofac, P. Bazant, I. Kuritka
Abstract:
This work is focused on the preparation of polymeric blend composed of polyamide (PA) and polyvinyl alcohol (PVA) with the intention to explore its basic characteristics important for potential use in medicine, especially for drug delivery systems. PA brings brilliant mechanical properties to the blend while PVA is inevitable due to its water solubility. Blend with different PA/PVA ratios were prepared and the release study of PVA into the water was carried out in a time interval 0-48 hours via the gravimetric method. The weight decrease is caused by the leaching of PVA domains what can be also followed by the optical and scanning electron microscopy. In addition, the thermal properties and the miscibility of blend components were evaluated by the differential scanning calorimeter. On the bases of performed experiments, it was found that the kinetics, continuity development and micro structure features of PA/PVA blends is strongly dependent on the blend composition and miscibility of its components.Keywords: releas study, polyvinyl alcohol, polyamide morphology, polymeric blend
Procedia PDF Downloads 3972492 Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano
Abstract:
A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza & Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the φ is more important than the alphabet size on the compression ratio. Unevenly distributed data φ makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time.Keywords: compressed suffix array, self-indexing, partitioned Elias-Fano, PEF-CSA
Procedia PDF Downloads 2532491 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 2052490 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method
Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee
Abstract:
This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.Keywords: PMSM, optimal design, rotor design, voltage-inductance map
Procedia PDF Downloads 6742489 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis
Procedia PDF Downloads 3862488 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals
Authors: Katsumi Hirata
Abstract:
To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position
Procedia PDF Downloads 3602487 Application of Fourier Series Based Learning Control on Mechatronic Systems
Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt
Abstract:
A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.Keywords: climbing stairs, FSBLC, ILC, service robot
Procedia PDF Downloads 3152486 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant
Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante
Abstract:
The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.Keywords: AOPs, decontamination, estrogens, radicals, wastewater
Procedia PDF Downloads 1912485 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5142484 Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity
Procedia PDF Downloads 1382483 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features
Procedia PDF Downloads 3612482 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods
Authors: Ramandeep Behl, S. S. Motsa
Abstract:
The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley
Procedia PDF Downloads 5182481 Enhanced Weighted Centroid Localization Algorithm for Indoor Environments
Authors: I. Nižetić Kosović, T. Jagušt
Abstract:
Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved.Keywords: indoor environment, received signal strength indicator, weighted centroid localization, wireless localization
Procedia PDF Downloads 2322480 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.Keywords: factorization machines, feature engineering, negative ratings, recommendation systems
Procedia PDF Downloads 243