Search results for: orthostatic stress test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12465

Search results for: orthostatic stress test

11685 Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area

Authors: Ayman El Sabagh, Celaleddin Barutçular, Hirofumi Saneoka

Abstract:

Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-enegry increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids.

Keywords: drought susceptibility index, grain growth, grain yield, maize, water stress

Procedia PDF Downloads 330
11684 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 187
11683 Current Status of 5A Lab6 Hollow Cathode Life Tests in Lanzhou Institute of Physics, China

Authors: Yanhui Jia, Ning Guo, Juan Li, Yunkui Sun, Wei Yang, Tianping Zhang, Lin Ma, Wei Meng, Hai Geng

Abstract:

The current statuses of lifetime test of LaB6 hollow cathode at the Lanzhou institute of physics (LIP), China, was described. 5A LaB6 hollow cathode was designed for LIPS-200 40mN Xenon ion thruster and it could be used for LHT-100 80 mN Hall thruster, too. Life test of the discharge and neutralizer modes of LHC-5 hollow cathode were stared in October 2011, and cumulative operation time reached 17,300 and 16,100 hours in April 2015, respectively. The life of cathode was designed more than 11,000 hours. Parameters of discharge and key structure dimensions were monitored in different stage of life test indicated that cathodes were health enough. The test will continue until the cathode cannot work or operation parameter is not in normally. The result of the endurance test of cathode demonstrated that the LaB6 hollow cathode is satisfied for the required of thruster in life and performance.

Keywords: LaB6, hollow cathode, thruster, lifetime test, electric propulsion

Procedia PDF Downloads 606
11682 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip

Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati

Abstract:

One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.

Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast

Procedia PDF Downloads 553
11681 Automated User Story Driven Approach for Web-Based Functional Testing

Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam

Abstract:

Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors.  In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template.  We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE.  We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators.  Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.

Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing

Procedia PDF Downloads 387
11680 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test

Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad

Abstract:

The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7  to 132 , 224 , and 396  in presence of 15 cm, 20 cm, and 30 cm base course, respectively.

Keywords: modulus of subgrade reaction, plate load test, base course, sandy subgrade

Procedia PDF Downloads 247
11679 Impact of an Exercise Program on Physical Fitness of a Candidate to Naval Academy: A Case Study

Authors: Ricardo Chaves, Carlos Vasconcelos

Abstract:

Candidates to join the Naval Academy have to take a set of physical tests, which is crucial for a high level of physical fitness. Thus, the planning of physical exercises for candidates to the Naval School must take into account the improvement of their physical fitness. The aim of this study was to investigate the impact of a 6-month exercise program to improve the physical fitness of an individual who will apply for the Naval Academy. This was a non-experimental pre-post-evaluation study. The patient was male, had 18 years old, and a body mass index of 21.1 kg.m². The patient participated in a 6-month aerobic and strength exercise program (3 sessions per week, 75 minutes duration each session). Physical fitness tests were performed according to the physical fitness requirements for entry into the Naval academy (muscle strength [maximum number of lifts and maximum number of sit-ups for 1 minute]; aerobic fitness [2.4 km run and 200 m swimming test]) before (baseline) and after the exercise intervention (6 months). Regarding muscle strength, in the abdominal test, the improvements between the pre-test (39 abdominals.) and post-test (61 abdominals) were 56.4%. For elevations, there was an increase in its number by 150% between the pre-test (4 elevations) and post-test (10 elevations). With regard to aerobic fitness, in the 2.4 km race, there was an evolution of 32.0% between the pre-test (16.46 min.) and the post-test (12.42 min.). For the 200-meter swimming test, there was a negative variation of 2% between the pre-test (2.25 min.) and post-test (2.28 min). A 6-month aerobic and strength exercise program leads to a positive evolution in the muscular strength of the patient. Regarding aerobic fitness, opposite results were found, with a positive evolution in the 2.4 km running test and a negative evolution in the swimming test. In future exercise programs for the improvement of the physical fitness of candidates for the Naval Academy, more emphasis has to be done on specific swimming training.

Keywords: case study, exercise program, Naval Academy, physical fitness

Procedia PDF Downloads 91
11678 Rheological Evaluation of Wall Materials and β-Carotene Loaded Microencapsules

Authors: Gargi Ghoshal, Ashay Jain, Deepika Thakur, U. S. Shivhare, O. P. Katare

Abstract:

The main objectives of this work were the rheological characterization of dispersions, emulsions at different pH used in the microcapsules preparation and the microcapsules obtain from gum arabic (A), guar gum (G), casein (C) and whey protein isolate (W) to keep β-carotene protected from degradation using the complex coacervation microencapsulation technique (CCM). The evaluation of rheological properties of dispersions, emulsions of different pH and so obtained microencapsules manifest the changes occur in the molecular structure of wall materials during the encapsulation process of β-carotene. These dispersions, emulsions of different pH and formulated microencapsules were subjected to go through various conducted experiments (flow curve test, amplitude sweep, and frequency sweep test) using controlled stress dynamic rheometer. Flow properties were evaluated as a function of apparent viscosity under steady shear rate ranging from 0.1 to 100 s-1. The frequency sweep test was conducted to determine the extent of viscosity and elasticity present in the samples at constant strain under changing angular frequency range from 0.1 to 100 rad/s at 25ºC. The dispersions and emulsion exhibited a shear thinning non-Newtonian behavior whereas microencapsules are considered as shear-thickening respectively. The apparent viscosity for dispersion, emulsions were decreased at low shear rates 20 s-1 and for microencapsules, it decreases up to ~50 s-1 besides these value, it has shown constant pattern. Oscillatory shear experiments showed a predominant viscous liquid behavior up to crossover frequencies of dispersions of C, W, A at 49.47 rad/s, 57.60 rad/s and 21.45 rad/s emulsion sample of AW at pH 5.0 it was 17.85 rad/s and GW microencapsules 61.40 rad/s respectively whereas no such crossover was found in G dispersion, emulsion with C and microencapsules still it showed more viscous behavior. Storage and loss modulus decreases with time also a shift of the crossover towards lower frequencies for A, W and C was observed respectively. However, their microencapsules showed more viscous behavior as compared to samples prior to blending.

Keywords: viscosity, gums, proteins, frequency sweep test, apparent viscosity

Procedia PDF Downloads 247
11677 Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)

Authors: Pechpailin Kortnoi, Tanitnun Paprad

Abstract:

Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool.

Keywords: myasthenia gravis, the fatigability test, the ice pack test, the combined bedside test

Procedia PDF Downloads 7
11676 An Analysis of Structural Relationship among Perceived Restorative Environment, Relaxing Experience, Subjective Vitality and the Health-Related Quality of Life of the Participants in Nature-Based Urban Outdoor Recreation

Authors: Lee Jin-Eui, Kim Jin-OK, Han Seung-Hoon, Kim Nam-Jo

Abstract:

Recently, there has been a growing interest in wellbeing where individuals pursue a healthy life. About the half of world population is living in cities, and the urban environment is negatively affecting the mental health of modern people. The stress level of urban dwellers continues to increase, and they pursue nature-based recreation activities to relieve their stresses. It was found that activities in green spaces are improving concentration, relieving mental stress, and positively affecting physical activities and social relationship, thus enhancing the quality of life. For that reason, studies have been continuously conducted on the role of nature, which is a green space for pursuing health and relieving the stress of urban dwellers. Therefore, this study investigated the effect of experiencing a restoration from nature-based outdoor recreation activities of urban dwellers on their quality of life for the groups with high and low-stress levels. The results of the analysis against visitors who trekked and climbed Mt. Bukhan National Park in Seoul, South Korea showed that the effect of perceiving restorative environment on relaxation, calmness and subjective vitality, and the effect of relaxation and calmness on the quality of life were similar in both groups. However, it was found that subjective vitality affected the quality of life in the group with the high-stress group, while it did not show a significant result in the low-stress group. This is because the high-stress group increased their belief in the future and themselves and vitality through nature-based outdoor activities, which in turn affected their quality of life, while people in the low-stress group normally have subjective vitality in their daily lives, not affected by nature-based outdoor recreation. This result suggests that urban dwellers feel relaxed and calm through nature-based outdoor recreation activities with perceived restorative environment, and such activities enhance their quality of life. Therefore, a wellbeing policy is needed to enhance the quality of life of citizens by creating green spaces in city centers for the promotion of public health.

Keywords: healing tourism, nature-based outdoor recreation, perceived restorative environment, quality of life

Procedia PDF Downloads 219
11675 Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation

Authors: Thiago Viana

Abstract:

Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads.

Keywords: crane, fracture, pin, railway

Procedia PDF Downloads 108
11674 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials

Authors: Shamsulhaq Amin

Abstract:

Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.

Keywords: permanent deformation, unbound granular materials, load cycles, stress level

Procedia PDF Downloads 39
11673 Analysis of Three-Dimensional Cracks in an Isotropic Medium by the Semi-Analytical Method

Authors: Abdoulnabi Tavangari, Nasim Salehzadeh

Abstract:

We presume a cylindrical medium that is under a uniform loading and there is a penny shaped crack located in the center of cylinder. In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, according to the RITZ method and by considering a cylindrical coordinate system as the main coordinate and a local polar coordinate, the mode-I SIF of threedimensional penny-shaped crack is obtained. In this method the unknown coefficients will be obtained with minimizing the potential energy that is including the strain energy and the external force work. By using the hook's law, stress fields will be obtained and then by using the Irvine equations, the amount of SIF will be obtained near the edge of the crack. This question has been solved for extreme medium in the Tada handbook and the result of the present research has been compared with that.

Keywords: three-dimensional cracks, penny-shaped crack, stress intensity factor, fracture mechanics, Ritz method

Procedia PDF Downloads 397
11672 Mastering Test Automation: Bridging Gaps for Seamless QA

Authors: Rohit Khankhoje

Abstract:

The rapid evolution of software development practices has given rise to an increasing demand for efficient and effective test automation. The paper titled "Mastering Test Automation: Bridging Gaps for Seamless QA" delves into the crucial aspects of test automation, addressing the obstacles faced by organizations in achieving flawless quality assurance. The paper highlights the importance of bridging knowledge gaps within organizations, emphasizing the necessity for management to acquire a deeper comprehension of test automation scenarios, coverage, report trends, and the importance of communication. To tackle these challenges, this paper introduces innovative solutions, including the development of an automation framework that seamlessly integrates with test cases and reporting tools like TestRail and Jira. This integration facilitates the automatic recording of bugs in Jira, enhancing bug reporting and communication between manual QA and automation teams as well as TestRail have all newly added automated testcases as soon as it is part of the automation suite. The paper demonstrates how this framework empowers management by providing clear insights into ongoing automation activities, bug origins, trend analysis, and test case specifics. "Mastering Test Automation" serves as a comprehensive guide for organizations aiming to enhance their quality assurance processes through effective test automation. It not only identifies the common pitfalls and challenges but also offers practical solutions to bridge the gaps, resulting in a more streamlined and efficient QA process.

Keywords: automation framework, API integration, test automation, test management tools

Procedia PDF Downloads 73
11671 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 315
11670 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya

Abstract:

The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.

Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella

Procedia PDF Downloads 72
11669 Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures

Authors: Naoyuki Sugihashi, Toshiharu Kishi

Abstract:

The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated.

Keywords: thermal crack control, mass concrete, thermal cracking probability, durability of concrete, calculating method of cracking probability

Procedia PDF Downloads 347
11668 Dimethyl fumarate Alleviates Valproic Acid-Induced Autism in Wistar Rats via Activating NRF-2 and Inhibiting NF-κB Pathways

Authors: Sandy Elsayed, Aya Mohamed, Noha Nassar

Abstract:

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behavior. Multiple studies suggest that oxidative stress and neuroinflammation are key factors in the etiology of ASD and often associated with worsening of ASD-related behaviors. Nuclear factor erythroid 2-related factor 2 (NRF-2) is a transcription factor that promotes expression of antioxidant response element genes in oxidative stress. In ASD subjects, decreased expression of NRF-2 in frontal cortex shifted the redox homeostasis towards oxidative stress, and resulted in inflammation evidenced by elevation of nuclear factor kappa B (NF-κB) transcriptional activity. Dimethyl fumarate (DMF) is a NRF-2 activator that is used in the treatment of psoriasis and multiple sclerosis. It participates in the transcriptional control of inflammatory factors via inhibition of NF-κB and its downstream targets. This study aimed to investigate the role of DMF in alleviating the cognitive impairments and behavior deficits associated with ASD through mitigation of oxidative stress and inflammation in prenatal valproic acid (VPA) rat model of autism. Methods: Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic oral gavage of DMF (150mg/kg/day) started from postnatal day (PND) 24 till PND62 (39 days). Prenatal VPA exposure elicited autistic behaviors including decreased social interaction and stereotyped behavior. Social interaction was evaluated using three-chamber sociability test and calculation of sociability index (SI), while stereotyped repetitive behavior and anxiety associated with ASD were assessed using marble burying test (MBT). Biochemical analyses were done on prefrontal cortex homogenates including NRF-2, and NF-κB expression. Moreover, inducible nitric oxide synthase (iNOS) gene expression and tumor necrosis factor (TNF-) protein expression were evaluated as markers of inflammation. Results: Prenatal VPA elicited decreased social interaction shown by decreased SI compared to control group (p < 0.001) and DMF enhanced SI (p < 0.05). In MBT, prenatal injection of VPA manifested stereotyped behavior and enhanced number of buried marbles compared to control (p < 0.05) and DMF reduced the anxiety-related behavior in rats exhibiting ASD-like behaviors (p < 0.05). In prefrontal cortex, NRF-2 expression was downregulated in prenatal VPA model (p < 0.0001) and DMF reversed this effect (p < 0.0001). The inflammatory transcription factor NF-κB was elevated in prenatal VPA model (p < 0.0001) and reduced (p < 0.0001) upon NRF-2 activation by DMF. Prenatal VPA expressed higher levels of proinflammatory cytokine TNF- compared to control group (p < 0.0001) and DMF reduced it (p < 0.0001). Finally, the gene expression of iNOS was downregulated upon NRF-2 activation by DMF (p < 0.01). Conclusion: This study proposes that DMF is a potential agent that can be used to ameliorate autistic-like-changes through NRF-2 activation along with NF-κB downregulation and therefore, it is a promising novel therapy for ASD.

Keywords: autism spectrum disorders, dimethyl fumarate, neuroinflammation, NRF-2

Procedia PDF Downloads 41
11667 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste

Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci

Abstract:

The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.

Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble

Procedia PDF Downloads 276
11666 The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)

Authors: Ali Haghiri

Abstract:

This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points.

Keywords: stress corrosion cracking, residual stress, austenitic stainless steel, Br- ion

Procedia PDF Downloads 161
11665 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy

Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie

Abstract:

NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.

Keywords: heat treatment, phase transformation, superelasticity, NiTi alloy

Procedia PDF Downloads 130
11664 Technoeustress in Higher Education Teachers: A Study on Positive Stress

Authors: Ligia Nascimento, Manuela Faia Correia

Abstract:

Nowadays, Information and Communication Technologies (ICT) are embedded in most professions. Technostress - or stress induced by the use of ICTs, has been studied in various sectors of activity and in different geographical areas, mainly from the perspective of its harmful impacts. In the context of work, the technological contexts capable of causing stress have been examined in-depth, as well as the type of individuals most likely to experience its negative effects. However, new lines of the research argue that the stress generated by the use of ICTs may not necessarily be detrimental (technodistress), admitting that, in contrast, and in addition, it may actually be beneficial to organizations and their employees (technoeustress). Any measures that succeed in reducing technodistress do not necessarily lead to the creation of technoeustress, justifying the study of this phenomenon in a focused and independent manner. Adopting the transactional model of stress as the basic theoretical framework, an ongoing research project aims to study technoeustress independently. Given the role played in the qualification and progress of society and the economy, it becomes particularly critical to care for the well-being of the higher education teacher. Particularly in recent times, when teleworking is prevalent, these professionals have made a huge, compulsive effort to adapt to a new teaching reality. Rather than limiting itself to mitigating adverse effects of ICT use, which featured earlier approaches, the present study seeks to understand how to activate the positive side of technostress in higher education teachers in order to obtain favorable personal and organizational outcomes from ICT use at work. The research model seeks to understand, upstream, the ICT characteristics that increase the perception of technoeustress among higher education teachers, studying the direct and moderating effects of individual and organizational variables and, downstream, the impacts that technoeustress has on job satisfaction and performance. This research contributes both to expanding the knowledge of the technostress phenomenon and to identify possible recommendations for management.

Keywords: higher education teachers, ICT, stress, technoeustress

Procedia PDF Downloads 146
11663 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: finite elements, Lagrangian, optimal stress location, serendipity

Procedia PDF Downloads 105
11662 Inhibition of Pipelines Corrosion Using Natural Extracts

Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed

Abstract:

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Keywords: inhibition, natural extract, oil pipelines corrosion, sulphur compounds

Procedia PDF Downloads 507
11661 Readiness of Military Professionals for Challenging Situations

Authors: Petra Hurbišová, Monika Davidová

Abstract:

The article deals with the readiness of military professionals for challenging situations. It discusses higher requirements on the psychical endurance of military professionals arising from the specific nature of the military occupation, which is typical for being very difficult to maintain regularity, which is in accordance with the hygiene of work alternated by relaxation. The soldier must be able to serve in the long term and constantly intense performance that goes beyond human tolerance to stress situations. A challenging situation is always associated with overcoming difficulties, obstacles and complicated circumstances or using unusual methods, ways and means to achieve the desired (expected) objectives, performing a given task or satisfying an important need. This paper describes the categories of challenging situations, their classification and characteristics. Attention is also paid to the formation of personality in challenging situations, coping with stress in challenging situations, Phases of solutions of stressful situations, resistance to challenging life situations and its factors. Finally, the article is focused on increasing the readiness of military professionals for challenging situations.

Keywords: coping, challenging situations, stress, stressful situations, military professionals, resilience

Procedia PDF Downloads 316
11660 Family Support in Combating Extreme Stress: The Experience of Entrance Examinations Candidates in Greek Universities

Authors: Marianna De Almeida

Abstract:

Greek secondary education is a highly selective system with regard to the access of students to Greek universities. Since access from elementary to lower secondary education and afterward to upper secondary education is rather liberal and almost free of selective mechanisms, the basic selection process comes after graduating from upper secondary school into play when students go through a highly selective process for university entry. This structure is responsible for the experience of extreme stress on the part of the candidates during a period of at least two years before the entrance examination leading to a radical change in students' everyday life routines. Instead of the school being an important agent for academic and psychological support, it seems that other agents, such as the informal private preparatory school and the student's families, take on the supportive role.

Keywords: stress, entrance examinations, family support, secondary education

Procedia PDF Downloads 68
11659 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 150
11658 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province

Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri

Abstract:

Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.

Keywords: corn, growth period, optimization, stress

Procedia PDF Downloads 143
11657 Modulation of Isoprenaline-Induced Myocardial Damage by Atorvastatin

Authors: Dalia Atallah, Lamiaa Ahmed, Hala Zaki, Mahmoud Khattab

Abstract:

Background: Isoprenaline (ISO) administration induces myocardial damage via oxidative stress and endothelial dysfunction. Atorvastatin (ATV) treatment improves both oxidative stress and endothelial dysfunction yet recent studies have reported a pro-oxidant effect upon ATV administration on both clinical and experimental studies. The present study was directed to investigate the effect of ATV pre-treatment and treatment on ISO-induced myocardial damage. Methods: Male rats were divided into five groups (n = 10). Rats were given ISO (5mg/kg/day, i.p.) for one week with or without ATV (10mg/kg/day, p.o.). ATV was given either as pre-treatment for one week before its co-administration with ISO for another week or as a treatment for two weeks at the end of the ISO administration. At the end of the experiment, the electrocardiographic examination was done and blood was isolated for the estimation of plasma creatine kinase MB (CK-MB) activity. Rats were then sacrificed and the whole ventricles were isolated for histological examination and the estimation of lipid peroxides as malondialdehyde (MDA) level, reduced glutathione (GSH) level, catalase activity, total nitrate-nitrite (NOx), as well as the estimation of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) protein expression. Results: ISO-induced myocardial damage showed a significant elevation in ST segment, an increase in CK-MB activity, as well as increased oxidative stress biomarkers. Also, ISO-treated rats showed a significant decrease in myocardial NOx level and eNOS as well as degeneration in the myocardium. ATV pre-treatment didn’t show any protection to ISO-treated rats. On the other hand, ATV treatment showed a significant decrease in both the elevated ST wave and CK-MB activity. Moreover, ATV Treatment succeeded to improve oxidative stress biomarkers, tissue NOx, and eNOS protein expression, as well as amelioration of the histological alterations. Conclusion: Pre-treatment with ATV failed to protect against ISO-induced damage. This might suggest a synergistic pro-oxidant effect upon administration of the pro-oxidant ISO along with ATV as demonstrated by the increased oxidative stress and endothelial dysfunction. On the other side, ATV treatment succeeded to significantly improve oxidative stress biomarkers, endothelial dysfunction and myocardial degeneration.

Keywords: atorvastatin, endothelial dysfunction, isoprenaline, oxidative stress

Procedia PDF Downloads 446
11656 Static and Dynamic Load on Hip Contact of Hip Prosthesis and Thai Femoral Bones

Authors: K. Chalernpon, P. Aroonjarattham, K. Aroonjarattham

Abstract:

Total hip replacement had been one of the most successful operations in hip arthritis surgery. The purpose of this research had been to develop a dynamic hip contact of Thai femoral bone to analyze the stress distribution on the implant and the strain distribution on the bone model under daily activities and compared with the static load simulation. The results showed the different of maximum von Mises stress 0.14 percent under walking and 0.03 percent under climbing stair condition and the different of equivalent total strain 0.52 percent under walking and 0.05 percent under climbing stair condition. The muscular forces should be evaluated with dynamic condition to reduce the maximum von Mises stress and equivalent total strain.

Keywords: dynamic loading, static load, hip prosthesis, Thai femur, femoral bone, finite element analysis

Procedia PDF Downloads 349