Search results for: maxim infringement recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1767

Search results for: maxim infringement recognition

987 Influence of Leadership Roles on Agricultural Employees’ Job Satisfaction

Authors: B. G. Abiona, E. O. Fakoya, D. O. Alabi

Abstract:

Influence of leadership roles on agricultural employees’ job satisfaction was studied. Data were from 68 randomly selected respondents. Major leadership roles include supervision of employees work (x̄=3.67), leaders were goal oriented (x̄=3.39), dissemination of information among the employees (x̄=3.35). Major employees’ satisfaction was: Employees work together with their colleagues (x̄=3.54) and also interact freely with their colleagues (x̄=3.51). Major challenges affecting employees job satisfaction were inadequate funding (x̄=3.30), irregular leave bonus (x̄=3.29), climate and weather condition (x̄=3.08) and inadequate incentive (x̄=3.02). Regression analysis showed a positive significant coefficient (P<0.05) exist between religion (p<0.05), educational status(p<0.05), year of service(p<0.05), leadership roles (p<0.005), challenges faced by respondents(P<0.05), and employees’ job satisfaction. For adequate leadership role, organization should pay attention to disbursement of training funds, availability of adequate incentive and leadership recognition.

Keywords: leadership roles, agricultural employees’, job satisfaction, institute, Nigeria

Procedia PDF Downloads 299
986 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 120
985 Study of Icons in Enterprise Application Software Context

Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal

Abstract:

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Keywords: HCI, icons, icon concreteness, icon recognition

Procedia PDF Downloads 258
984 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 154
983 Foraminiferal Associations and Paleoecology of the Oligocene Sediments in Zagros Basin, SW Iran

Authors: Tahereh Habibi

Abstract:

The Oligocene carbonates are widespread along Fars Province, Zagros Basin, SW Iran. Distribution of planktonic and larger benthic foraminfera, stratal patterns and facies architecture are used as a tool to define microfacies and foraminiferal associations of these strata at Kavar Section. The presence of Nummulites spp. indicated the age of the sequence as Rupelian-Chattian (Nummulites vascus-Nummulites fichteli and Archaias asmaricus/hensoni-Miogypsinoides complanatus assemblage zones). The paleoenvironmental setting is interpreted as a homoclinal ramp environment according to the recognition of eight microfacies types. Four foraminiferal associations are recognized in the investigated ramp setting. They represent a salinity of 34-40 to 50 psu and higher than 50 psu in more restricted conditions. The depth ranges from 200 m as evidenced by the presence of planktonic foraminifera and to less than 30m in the more restricted inner ramp environment. Warm tropical and subtropical water with temperature of 18-25° C is proposed.

Keywords: foraminiferal associations, microfacies, oligocene, paleoecology

Procedia PDF Downloads 508
982 The Molecular Bases of Δβ T-Cell Mediated Antigen Recognition

Authors: Eric Chabrol, Sidonia B.G. Eckle, Renate de Boer, James McCluskey, Jamie Rossjohn, Mirjam H.M. Heemskerk, Stephanie Gras

Abstract:

αβ and γδ T-cells are disparate T-cell lineages that, via their use of either αβ or γδ T-cell antigen receptors (TCRs) respectively, can respond to distinct antigens. Here we characterise a new population of human T-cells, term δβ T-cells, that express TCRs comprising a TCR-δ variable gene fused to a Joining-α/Constant-α domain, paired with an array of TCR-β chains. We characterised the cellular, functional, biophysical and structural characteristic feature of this new T-cells population that reveal some new insight into TCR diversity. We provide molecular bases of how δβ T-cells can recognise viral peptide presented by Human Leukocyte Antigen (HLA) molecule. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer antigen specificity thus expanding our understanding of T-cell biology and TCR diversity.

Keywords: new delta-beta TCR, HLA, viral peptide, structural immunology

Procedia PDF Downloads 425
981 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus Spp.)

Authors: Dinh Ha, Tran, Chung-Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in four red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August, the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0-90.5 %) in all pollination treatments and the maximum fruit weight (402.6 g) in hand self- and (403.4 g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2 %) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement

Procedia PDF Downloads 305
980 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 227
979 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 380
978 The Role of Context in Interpreting Emotional Body Language in Robots

Authors: Jekaterina Novikova, Leon Watts

Abstract:

In the emerging world of human-robot interaction, people and robots will interact socially in real-world situations. This paper presents the results of an experimental study probing the interaction between situational context and emotional body language in robots. 34 people rated video clips of robots performing expressive behaviours in different situational contexts both for emotional expressivity on Valence-Arousal-Dominance dimensions and by selecting a specific emotional term from a list of suggestions. Results showed that a contextual information enhanced a recognition of emotional body language of a robot, although it did not override emotional signals provided by robot expressions. Results are discussed in terms of design guidelines on how an emotional body language of a robot can be used by roboticists developing social robots.

Keywords: social robotics, non-verbal communication, situational context, artificial emotions, body language

Procedia PDF Downloads 289
977 An Optimized RDP Algorithm for Curve Approximation

Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park

Abstract:

It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.

Keywords: curve approximation, essential point, RDP algorithm

Procedia PDF Downloads 539
976 Factors Associated with Hotel Employees’ Loyalty: A Case Study of Hotel Employees in Bangkok, Thailand

Authors: Kevin Wongleedee

Abstract:

This research paper was aimed to examine the reasons associated with hotel employees’ loyalty. This was a case study of 200 hotel employees in Bangkok, Thailand. The population of this study included all hotel employees who were working in Bangkok during January to March, 2014. Based on 200 respondents who answered the questionnaire, the data were complied by using SPSS. Mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of importance was 4.40, with 0.7585 of standard deviation. Moreover, the mean average can be used to rank the level of importance from each factor as follows: 1) salary, service charge cut, and benefits, 2) career development and possible advancement, 3) freedom of working, thinking, and ability to use my initiative, 4) training opportunities, 5) social involvement and positive environment, 6) fair treatment in the workplace and fair evaluation of job performance, and 7) personal satisfaction, participation, and recognition.

Keywords: hotel employees, loyalty, reasons, case study

Procedia PDF Downloads 405
975 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis

Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng

Abstract:

Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.

Keywords: attribution trace, probabilistic relevance, network attack, attacker identification

Procedia PDF Downloads 368
974 Nurturing Minds, Shaping Futures: A Reflective Journey of 32 Years as a Teacher Educator

Authors: Mary Isobelle Mullaney

Abstract:

The maxim "an unexamined life is not worth living," attributed to Socrates, prompts a contemplative reflection spanning over 32 years as a teacher educator in the Republic of Ireland. Taking time to contemplate the changes that have occurred and the current landscape provides valuable insights into the dynamic terrain of teacher preparation. The reflective journey traverses the impacts of global and societal shifts, responding to challenges, embracing advancements, and navigating the delicate balance between responsiveness to the world and the active shaping of it. The transformative events of the COVID-19 pandemic spotlighted the indispensable role of teachers in Ireland, reinforcing the critical nature of education for the well-being of pupils. Research solidifies the understanding that teachers matter and so it is worth exploring the pivotal role of the teacher educator. This reflective piece examines the changes in teacher education and explores the juxtapositions that have emerged in response to three decades of profound change. The attractiveness of teaching as a career is juxtaposed against the reality of the demands of the job, with conditions for public servants in Ireland undergoing a shift. High-level strategic discussions about increasing teacher numbers now contrast with a previous oversupply. The delicate balance between the imperative to increase enrolment (getting "bums on seats") and the gatekeeper role of teacher educators is explored, raising questions about maintaining high standards amid changing student profiles. Another poignant dichotomy involves the high demand for teachers versus the hurdles candidates face in becoming teachers. The rising cost and duration of teacher education courses raise concerns about attracting quality candidates. The perceived attractiveness of teaching as a career contends with the reality of increased demands on educators. One notable juxtaposition centres around the rapid evolution of Irish initial teacher education versus the potential risk of change overload. The Teaching Council of Ireland has spearheaded considerable changes, raising questions about the timing and evaluation of these changes. This reflection contemplates the vision of a professional teaching council versus its evolving reality and the challenges posed by the value placed on school placement in teacher preparation. The juxtapositions extend to the classroom, where theory may not seamlessly align with the lived experience. Inconsistencies between college expectations and the classroom reality prompt reflection on the effectiveness of teacher preparation programs. Addressing the changing demographic landscape of society and schools, there is a persistent incongruity between the diversity of Irish society and the profile of second-level teachers. As education undergoes a digital revolution, the enduring philosophies of education confront technological advances. This reflection highlights the tension between established practices and contemporary demands, acknowledging the irreplaceable value of face-to-face interaction while integrating technology into teacher training programs. In conclusion, this reflective journey encapsulates the intricate web of juxtapositions in Irish Initial Teacher Education. It emphasises the enduring commitment to fostering education, recognising the profound influence educators wield, and acknowledging the challenges and gratifications inherent in shaping the minds and futures of generations to come.

Keywords: Irish post primary teaching, juxtapositions, reflection, teacher education

Procedia PDF Downloads 57
973 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays

Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner

Abstract:

Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.

Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation

Procedia PDF Downloads 294
972 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System

Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam

Abstract:

Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.

Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system

Procedia PDF Downloads 43
971 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride

Procedia PDF Downloads 450
970 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar

Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien

Abstract:

The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.

Keywords: range profile, difference operator method, window-based method, automatic target recognition

Procedia PDF Downloads 127
969 The Industrial Property in the Context of Wine Production in Brazil

Authors: Fátima R. Zan, Daniela C. Guimarães, Rosângela O. Soares, Suzana L. Russo

Abstract:

The wine until it reaches the consumer has a long way to go, from planting the wine to the bottling and the placing on the market, bringing many years of experimentation, and through several generations to have recognition for quality and excellence. The winemaking grew dramatically and are today many brands, including the associated locations, demonstrating their origin and cultural order that is associated with their production. The production, circulation and marketing of wines and products of grape and wine in Brazil is regulated by Law 7.678/88, amended by Law 10970/04, and adjusting the legislation to Regulation Wine Mercosur. This study was based on a retrospective study, and aimed to identify and characterize the modalities of industrial property used in wine production in Brazil. The wineries were selected from the 2014 ranking list, drawn up by the World Association of Journalists and Writers of Wines and Spirits (WAWWJ). The results show that the registration with INPI, regarding Patents, Trademarks, Industrial Designs and Geographical Indications, is not used by the wineries analyzed.

Keywords: counterfeiting, industrial property, protection, wine production

Procedia PDF Downloads 574
968 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian

Authors: D. Beziakina, E. Bulgakova

Abstract:

This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.

Keywords: speech analysis, statistical analysis, speaker recognition, identification of person

Procedia PDF Downloads 472
967 Auditing Hindi Celluloid as a Catalyst of Transition: The Eventual Delineation of LGBTQ+

Authors: Chinmayee Nanda

Abstract:

In this modern era, India is still chained up with the idea of ‘Heteronormativity’. As a result, homonormativity, transgressions, preconceived notions, and bigotry add to many raised eyebrows, the majority being the norm and overpowering the voices of the minority. In this country an undeniable space is the need of the hour to identify those unheard voices. Media can be considered as the most powerful space for the same. This paper aims to examine the representation as well as transition (if any) of the varied figments of the imagination and alternative facts relating to the LGBTQ+ community in celluloid in Hindi. This paper will also explore the visibility of the queer aspirations through this media. The portrayal of the LGBTQ community as the ‘other’ and ‘not normal’ is a matter of concern about any individual’s sexuality. The years 2014 and 2018 turned out to be remarkable in the Indian Legal System pertaining to the recognition of the ‘Third Gender’ and ‘Decriminalization of Homosexuality,’ respectively. In relation to that, this paper will also explore the impression of these dynamics on the subsequent depiction.

Keywords: sexuality, hindi cinema, gender fluidity, legal framework

Procedia PDF Downloads 28
966 Myth in Political Discourse as a Form of Linguistic Consciousness

Authors: Kuralay Kenzhekanova, Akmaral Dalelbekkyzy

Abstract:

The article is devoted to the problem of political discourse and its reflection on mass cognition. This article is dedicated to describe the myth as one of the main features of political discourse. The dominance of an expressional and emotional component in the myth is shown. Precedent phenomenon plays an important role in distinguishing the myth from the linguistic point of view. Precedent phenomena show the linguistic cognition, which is characterized by their fame and recognition. Four types of myths such as master myths, a foundation myth, sustaining myth, eschatological myths are observed. The myths about the national idea are characterized by national specificity. The main aim of the political discourse with the help of myths is to influence on the mass consciousness in order to motivate the addressee to certain actions so that the target purpose is reached owing to unity of forces.

Keywords: cognition, myth, linguistic consciousness, types of myths, political discourse, political myth, precedent phenomena

Procedia PDF Downloads 414
965 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 422
964 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique

Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah

Abstract:

An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.

Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic

Procedia PDF Downloads 490
963 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data

Authors: Tiee-Jian Wu, Chih-Yuan Hsu

Abstract:

Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.

Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method

Procedia PDF Downloads 285
962 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 639
961 Herpetic Gingivostomatitis in Children: A Case Report

Authors: Miloud Abid Brahim

Abstract:

Herpetic gingivostomatitis is a prevalent viral infection in children, predominantly caused by herpes simplex virus type 1 (HSV-1). This case report details the clinical presentation and management of a 9-year-old patient diagnosed with this condition. The child exhibited fever, oral pain, and vesicular lesions that progressed to painful erosions affecting the inner cheeks, tongue, lips, and gums. The diagnosis was established based on clinical findings. Treatment included symptomatic care with analgesics and antipyretics, antimicrobial therapy with antibiotics and antiseptics, and early administration of antiviral medication (aciclovir). The comprehensive approach led to complete resolution of symptoms within 10 days. This case underscores the significance of early recognition and prompt treatment to mitigate the impact of this condition on the patient’s quality of life and to prevent complications.

Keywords: gingivostomatitis, case report, pediatric oral health, herpes simplex virus (HSV-1)

Procedia PDF Downloads 7
960 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network

Procedia PDF Downloads 104
959 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 530
958 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 172