Search results for: inclusive speech recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3087

Search results for: inclusive speech recognition

2307 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled

Authors: Rishabh Ambavanekar

Abstract:

Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.

Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis

Procedia PDF Downloads 119
2306 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575
2305 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial

Procedia PDF Downloads 146
2304 LuMee: A Centralized Smart Protector for School Children who are Using Online Education

Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.

Abstract:

This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.

Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data

Procedia PDF Downloads 89
2303 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 161
2302 Teachers as Agents of Change in Diverse Classrooms: An Overview of the Literature

Authors: Anna Sanczyk

Abstract:

Diverse students may experience different forms of discrimination. Some of the oppression students experience in schools are racism, sexism, classism, or homophobia that may affect their achievement, and teachers need to make sure they create inclusive, equitable classroom environments. The broader literature on social change in education shows that teachers who challenge oppression and want to promote equitable and transformative education face institutional, social, and political constraints. This paper discusses research on teachers’ work to create socially just and culturally inclusive classrooms and schools. The practical contribution of this literature review is that it provides a comprehensive compilation of the studies presenting teachers’ roles and efforts in affecting social change. The examination of the research on social change in education points to the urgency of teachers addressing the needs of marginalized students and resisting systemic oppression in schools. The implications of this literature review relate to the concerns that schools should provide greater advocacy for marginalized students in diverse learning contexts, and teacher education programs should prepare teachers to be active advocates for diverse students. The literature review has the potential to inform educators to enhance educational equity and improve the learning environment. This literature review illustrates teachers as agents of change in diverse classrooms and contributes to understanding various ways of taking action towards fostering more equitable and transformative education in today’s schools.

Keywords: agents of change, diversity, opression, social change

Procedia PDF Downloads 140
2301 Intercultural and Inclusive Teaching Competency Implementation within a Canadian Polytechnic's Academic Model: A Pre- and Post-Assessment Analysis

Authors: Selinda England, Ben Bodnaryk

Abstract:

With an unprecedented increase in provincial immigration and government support for greater international and culturally diverse learners, a trade/applied learning-focused polytechnic with four campuses within one Canadian province saw the need for intercultural awareness and an intercultural teaching competence strategy for faculty training. An institution-wide pre-assessment needs survey was conducted in 2018, in which 87% of faculty professed to have some/no training when working with international and/or culturally diverse learners. After researching fellow Polytechnics in Canada and seeing very little in the way of faculty support for intercultural competence, an institutional project team comprised of members from all facets of the Polytechnic was created and included: Indigenous experts, Academic Chairs, Directors, Human Resource Managers, and international/settlement subject matter experts. The project team was organized to develop and implement a new academic model focused on enriching intercultural competence among faculty. Utilizing a competency based model, the project team incorporated inclusive terminology into competency indicators and devised a four-phase proposal for implementing intercultural teacher training: a series of workshops focused on the needs of international and culturally diverse learners, including teaching strategies based on current TESOL methodologies, literature and online resources for quick access when planning lessons, faculty assessment examples and models of interculturally proficient instructors, and future job descriptions - all which promote and encourage development of specific intercultural skills. Results from a post-assessment survey (to be conducted in Spring 2020) and caveats regarding improvements and next steps will be shared. The project team believes its intercultural and inclusive teaching competency-based model is one of the first, institution-wide faculty supported initiatives within the Canadian college and Polytechnic post-secondary educational environment; it aims to become a leader in both the province and nation regarding intercultural competency training for trades, industry, and business minded community colleges and applied learning institutions.

Keywords: cultural diversity and education, diversity training teacher training, teaching and learning, teacher training

Procedia PDF Downloads 117
2300 Polite Request Strategies in Commuter Discourse in Xhosa

Authors: Mawande Dlali

Abstract:

This paper examines the request strategies in commuter discourse involving taxi drivers and passengers in Khayelitsha as well as the responses to these requests. The present study considers requests in commuter transport as face threatening acts (FTAs), hence the need for the commuter crew to strategically shape their communicative actions to achieve their overall discourse goal of getting passengers to perform actions that are in their own interest with minimum resistance or confrontation. The crew presents itself by using communicative devices that prompt the passengers to evaluate it positively as warm, friendly, and respectful. However, the passengers' responses to requests range from compliance to resistance depending on their interpretation of the speaker’s motive and the probable social consequences. Participant observation by the researcher was the main method of collecting examples of requests and responses to the requests. Unstructured interviews and informal discussions were made with randomly selected taxi drivers and commuters. The findings and explanations presented in this article revealed the predominance of polite requests as speech acts in taxi discourse in Khayelitsha. This research makes a contribution to the contemporary pragmatics study of African languages in urban context.

Keywords: face threatening acts, speech acts, request strategies, discourse

Procedia PDF Downloads 164
2299 Identifying Missing Component in the Bechdel Test Using Principal Component Analysis Method

Authors: Raghav Lakhotia, Chandra Kanth Nagesh, Krishna Madgula

Abstract:

A lot has been said and discussed regarding the rationale and significance of the Bechdel Score. It became a digital sensation in 2013, when Swedish cinemas began to showcase the Bechdel test score of a film alongside its rating. The test has drawn criticism from experts and the film fraternity regarding its use to rate the female presence in a movie. The pundits believe that the score is too simplified and the underlying criteria of a film to pass the test must include 1) at least two women, 2) who have at least one dialogue, 3) about something other than a man, is egregious. In this research, we have considered a few more parameters which highlight how we represent females in film, like the number of female dialogues in a movie, dialogue genre, and part of speech tags in the dialogue. The parameters were missing in the existing criteria to calculate the Bechdel score. The research aims to analyze 342 movies scripts to test a hypothesis if these extra parameters, above with the current Bechdel criteria, are significant in calculating the female representation score. The result of the Principal Component Analysis method concludes that the female dialogue content is a key component and should be considered while measuring the representation of women in a work of fiction.

Keywords: Bechdel test, dialogue genre, parts of speech tags, principal component analysis

Procedia PDF Downloads 142
2298 The Representation of Anies Baswedan about the Issue of the Word 'Pribumi' in His DKI Jakarta Governor Inauguration Speech in Indonesian Media

Authors: Nizar Ibnus

Abstract:

The term 'pribumi' or indigenous people was originally coined in the colonisation era to differentiate between Dutch colonials and native Indonesian people. The term was also used to trigger nationalism among Indonesian people to liberate their country from any kind of colonialism which had seized their freedom for ages. However, after the war was over and the colonials had fled from the country, the usage began to be altered. It changed from nationalist propaganda term to somewhat racist term. Immigrants and half-blooded people were massively victimized. Then, in 1998 the government forbade the use of this term for public use. Apparently, this racial issue happens again. On 16th October 2017, Anies Baswedan as the new government of DKI Jakarta province mentioned this term in his inauguration speech. This indeed raises controversy among Indonesian people. Using critical discourse analysis, this paper examines how Indonesian media portray the figure of Anies Baswedan regarding the issue. The findings reveal that Indonesian media depict Anies Baswedan differently. Some view him guilty as he mentioned the controversial and forbidden term in public. While, the other media consider him as innocent as he used the term in different contexts. This various media point of view and framing is presumably emerged from their different ideologies.

Keywords: critical discourse analysis, media framing, racism, pribumi

Procedia PDF Downloads 188
2297 A Fast Version of the Generalized Multi-Directional Radon Transform

Authors: Ines Elouedi, Atef Hammouda

Abstract:

This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.

Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition

Procedia PDF Downloads 278
2296 Characteristic and Prevalence of Cleft Lip and Palate Patient in Bandung Cleft Lip and Palate Center: A Descriptive Study

Authors: Kusmayadi Ita Nursita, Sundoro Ali

Abstract:

Cleft lip and palate are one of the most common congenital abnormalities in the face. It could happen to anyone, but mostly affect Asian population including Indonesia. Factors that influence the occurrence of cleft lip and palate vary from genetic to environmental factors. Children with cleft lip and palate will often have various problems such as airway disorders, eating disorders, speech and language developmental disorders, hearing disorders and psycho-social disorders, one of which is caused by appearance disorders. During his life, the child will experience multidisciplinary surgery and non-surgical treatment and can be accompanied by a psychological and financial burden on himself and his family. In Indonesia, there are no detailed scientific data on the prevalence and characteristic of cleft lip and palate patients. It was mainly caused by the absence of a national level organization, differences in geographical location, and the absence of national guidelines. This study aimed to describe the characteristic and prevalence of cleft lip and palate patients in Bandung Cleft Lip and Palate Center from 1 January 2016 to 31 December 2017. A total of 560 patients were included in the study. The highest percentage of cases are left unilateral cleft lip and palate with higher number of female patient and labioplasty as the most often surgical procedure to be conducted in Bandung Cleft Lip and Palate Center. In order to improve quality of life in patients with cleft lip and palate, early recognition and early treatment based on actual comprehensive data should be conducted. The data from Bandung Cleft Lip and Palate Center as one of the largest center of cleft lip and palate in West Java Indonesia hopefully could provide a big step of further comprehensive data collection in Indonesia and for the better overall management of cleft lip and palate in the future.

Keywords: cleft lip, cleft palate, characteristic, prevalence

Procedia PDF Downloads 137
2295 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 499
2294 Community Benefitting through Tourism: DASTA-Thailand Model

Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul

Abstract:

Designated Areas for Sustainable Tourism Administration (DASTA) is a public organization, dedicating to sustainable tourism development in 6 designated areas in Thailand. This paper provides rich reflections from a decade of DASTA, formulating an advanced model to deepen our understanding of 2 key intertwining issues; 1) what are the new landscapes of actors for community based tourism and 2) who are the benefactors and beneficiaries of tourism development within the community? An action research approach was used, enabling the process and evidence-based cases to be better captured. The aim is to build theoretical foundation through 13 communities/cases, which have engaged in community based tourism pilot projects. Drawing from emic and qualitative research, specific and contextual phenomenon provides succinct patterns of ‘Community Benefitting through Tourism (CbtT)’ model. The re-definition of the 2 key issues helps shape the interlinking of actors; practicalities of inclusive tourism and inter-sectoral framework and its value chain will also be set forth. In tourism sector, community members could be active primarily on the supply side as employees, entrepreneurs and local heritage experts. CbtT when well defined stimulates the entire value chain of local economy while promoting social innovation through positive dialogue with wider actors. Collaboration with a new set of actors who are from the tourism-related businesses and non-tourism related businesses create better impacts on mutual benefits.

Keywords: community based tourism, community benefitting through tourism -CbtT DASTA model, sustainable tourism in thailand, value chain and inclusive business

Procedia PDF Downloads 298
2293 Urban Accessibility of Historical Cities: The Venetian Case Study

Authors: Valeria Tatano, Francesca Guidolin, Francesca Peltrera

Abstract:

The preservation of historical Italian heritage, at the urban and architectural scale, has to consider restrictions and requirements connected with conservation issues and usability needs, which are often at odds with historical heritage preservation. Recent decades have been marked by the search for increased accessibility not only of public and private buildings, but to the whole historical city, also for people with disability. Moreover, in the last years the concepts of Smart City and Healthy City seek to improve accessibility both in terms of mobility (independent or assisted) and fruition of goods and services, also for historical cities. The principles of Inclusive Design have introduced new criteria for the improvement of public urban space, between current regulations and best practices. Moreover, they have contributed to transforming “special needs” into an opportunity of social innovation. These considerations find a field of research and analysis in the historical city of Venice, which is at the same time a site of UNESCO world heritage, a mass tourism destination bringing in visitors from all over the world and a city inhabited by an aging population. Due to its conformation, Venetian urban fabric is only partially accessible: about four thousand bridges divide thousands of islands, making it almost impossible to move independently. These urban characteristics and difficulties were the base, in the last 20 years, for several researches, experimentations and solutions with the aim of eliminating architectural barriers, in particular for the usability of bridges. The Venetian Municipality with the EBA Office and some external consultants realized several devices (e.g. the “stepped ramp” and the new accessible ramps for the Venice Marathon) that should determine an innovation for the city, passing from the use of mechanical replicable devices to specific architectural projects in order to guarantee autonomy in use. This paper intends to present the state-of-the-art in bridges accessibility, through an analysis based on Inclusive Design principles and on the current national and regional regulation. The purpose is to evaluate some possible strategies that could improve performances, between limits and possibilities of interventions. The aim of the research is to lay the foundations for the development of a strategic program for the City of Venice that could successfully bring together both conservation and improvement requirements.

Keywords: accessibility of historical cities, historical heritage preservation, inclusive design, technological and social innovation

Procedia PDF Downloads 281
2292 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
2291 Speech Community and Social Language Codes: A Sociolinguistic Study of Mampruli-English Codeswitching in Nalerigu, Ghana

Authors: Gertrude Yidanpoa Grumah

Abstract:

Ghana boasts of a rich linguistic diversity, with around eighty-seven indigenous languages coexisting with English, the official language. Within this multilingual environment, speech communities adopt bilingual code choices as a common practice, as people seamlessly switch between Ghanaian languages and English. Extensive research has delved into this phenomenon from various perspectives, including the role of bilingual code choices in teaching, its implications for language policy, and its significance in multilingual communities. Yet, a noticeable gap in the literature persists, with most studies focusing on codeswitching between English and the major southern Ghanaian languages like Twi, Ga, and Ewe. The intricate dynamics of codeswitching with minority indigenous languages, such as Mampruli spoken in northern Ghana, remain largely unexplored. This thesis embarks on an investigation into Mampruli-English codeswitching, delving into the linguistic practices of educated Mampruli speakers. The data collection methods encompass interviews, recorded radio programs, and ethnographic observation. The analytical framework employed draws upon the Ethnography of Communication, with observation notes and transcribed interviews thoughtfully classified into discernible themes. The research findings suggest that a bilingual's tendency to switch from Mampruli to English is significantly influenced by factors such as the level of education, age, gender, perceptions of language prestige, and religious beliefs. In essence, this study represents a pioneering endeavor, marking the first comprehensive study on codeswitching practices within the Mampruli-English context and making a significant contribution to our understanding of Mampruli linguistics, covering the social language codes reflecting the speech community. In a region where such research has been scarce for the past four decades, this study addresses a critical knowledge gap, shedding light on the intricate dynamics of language use in northern Ghana.

Keywords: codeswitching, English, ethnography of communication, Mampruli, sociolinguistics

Procedia PDF Downloads 62
2290 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language

Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot

Abstract:

The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.

Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields

Procedia PDF Downloads 103
2289 Working Conditions, Motivation and Job Performance of Hotel Workers

Authors: Thushel Jayaweera

Abstract:

In performance evaluation literature, there has been no investigation indicating the impact of job characteristics, working conditions and motivation on the job performance among the hotel workers in Britain. This study tested the relationship between working conditions (physical and psychosocial working conditions) and job performance (task and contextual performance) with motivators (e.g. recognition, achievement, the work itself, the possibility for growth and work significance) as the mediating variable. A total of 254 hotel workers in 25 hotels in Bristol, United Kingdom participated in this study. Working conditions influenced job performance and motivation moderated the relationship between working conditions and job performance. Poor workplace conditions resulted in decreasing employee performance. The results point to the importance of motivators among hotel workers and highlighted that work be designed to provide recognition and sense of autonomy on the job to enhance job performance of the hotel workers. These findings have implications for organizational interventions aimed at increasing employee job performance.

Keywords: hotel workers, working conditions, motivation, job characteristics, job performance

Procedia PDF Downloads 598
2288 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 130
2287 Importance of Developing a Decision Support System for Diagnosis of Glaucoma

Authors: Murat Durucu

Abstract:

Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.

Keywords: decision support system, glaucoma, image processing, pattern recognition

Procedia PDF Downloads 302
2286 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
2285 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications

Authors: Antonio D. Lee, Steven X. Jiang

Abstract:

A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.

Keywords: cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue

Procedia PDF Downloads 328
2284 Development and Clinical Application of a Cochlear Implant Mapping Assistance System

Authors: Hong Mengdi, Li Jianan, Ji Fei, Chen Aiting, Wang Qian

Abstract:

Objective: To overcome the communication barriers that audiologists encounter during cochlear implant mapping, particularly the challenge of eliciting subjective feedback from recipients regarding electrical stimulation, and to enhance the capabilities of existing technologies, we teamed up with software engineers to design an interactive approach for patient-audiologist communication. This approach employs a tablet (PAD) as the interface for a communication and feedback system between patients and audiologists during the mapping process, known as the Cochlear Implant Mapping Assistance System. Methods: Capitalizing on the touchscreen functionality of the PAD, the recipients' subjective feedback during cochlear implant mapping is instantly transmitted to the audiologist's mapping computer. The system acts as a platform for auditory assessment instruments, facilitating immediate evaluation of recipients' post-mapping hearing and speech discrimination capabilities. Furthermore, the system is designed to augment the visual reinforcement audiometry (VRA) process. The system consists of six modules, including three testing projects: loudness testing, hearing threshold testing, and loudness balance testing; two assessment projects: warble tone testing and digit speech testing; and one VRA animation project. It also incorporates speech-to-text and text input display functions tailored to accommodate speech communication difficulties in hearing-impaired individuals, with pre-installed common exchange content between audiologists and recipients. Audiologists can input sentences by selecting options. The system supports switching between Chinese and English versions, suitable for audiologists and recipients who use English, facilitating international application of the system. Results: The Cochlear Implant Mapping Assistance System has been in use for over a year in the Auditory Implant Center of the Department of Otology and Neurotology, Medical Center of Otology and Head & Neck Surgery, Chinese PLA General Hospital, with more than 300 recipients using this mapping system. Currently, the system operates stably, with both audiologists and recipients providing positive feedback, indicating a significant improvement over previous methods. It is particularly well-received by pediatric recipients, significantly enhancing the work efficiency of audiologists and improving the feedback efficiency and accuracy of recipients. The system enhances the comprehensibility for cochlear implant recipients, improves wearing comfort and user experience, facilitates cochlear implant auditory mapping, and increases the collection of previously challenging-to-obtain data during the existing assisted mapping process, such as loudness testing data, electrical stimulation testing data, warble tone testing data, loudness balance testing data, digit speech testing data, and visual reinforcement audiometry testing data. Real-time data recording improves the accuracy of assisted mapping. The interface design is meticulously crafted to accommodate patients of varying ages and cognitive abilities, featuring an intuitive design that allows for effortless, guidance-free use by patients.

Keywords: audiologist, subjective feedback, mapping, cochlear implant

Procedia PDF Downloads 20
2283 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 143
2282 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 425
2281 Enabling Affirmative Futures: Making Use of Virtual Spaces and New Social Technologies in Co-Production Research with Marginalised Young People

Authors: Kirsty Liddiard

Abstract:

In this paper, we detail the politics and practicalities of co-produced disability research with disabled young people with life-limiting and life-threatening impairments in our ESRC funded project, Life, Death, Disability and the Human: Living Life to the Fullest. We centre our Co-Researcher Collective of disabled young people who, through virtual research methods and social technologies, are co-leading this innovative project exploring the lives, hopes, desires and ambitions of young disabled people living short(er) lives. Co-production is an established approach; however, our co-researchers have led us to develop inclusive and transformative research practices that engage with online social research methods in innovative ways. Through this discussion, we demarcate the Academy and ‘research process’ as potentially deeply ableist spaces that propogate the normative researcher as non-disabled; someone integrated into the Academy and insecure employment; and who enacts normative modes of leadership. We use our experiences of co-production in Living Life to the Fullest, then, to show that research – as a discipline, a set of politics, and scholarly practice – must be transformed in order to enable new inclusive research futures that support meaningful co-production with marginalised young people. In conclusion, as we detail our experiences, we aim to encourage disability studies researchers and others to adopt virtual environments and social technologies when researching with and for the lives of disabled people.

Keywords: co-production, illness, youth, technology

Procedia PDF Downloads 156
2280 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 308
2279 Religion and Politeness: An Exploratory Study for the Integration of Religious Expressions with Politeness Strategies in Iraqi Computer-Mediated Communication

Authors: Rasha Alsabbah

Abstract:

This study explores the relationship between polite language use and religion in the Iraqi culture in computer mediated communication. It tackles the speech acts where these expressions are employed, the frequency of their occurrence and the aims behind them. It also investigates if they have equivalent expressions in English and the possibility of translating them in intercultural communication. Despite the wide assumption that language is a reflection of culture and religion, it started to grant the attention sociologists during the recent 40 years when scholars have questioned the possible interconnection between religion and language in which religion is used as a mean of producing language and performing pragmatic functions. It is presumed that Arabs in general, and Iraqis in particular, have an inclination to use religious vocabulary in showing politeness in their greeting and other speech acts. Due to Islamic religion and culture’s influences, it is observed that Iraqis are very much concerned of maintaining social solidarity and harmonious relationships which make religion a politeness strategy that operates as the key point of their social behaviours. In addition, religion has found to influence almost all their interactions in which they have a tendency of invoking religious expressions, the lexicon of Allah (God), and Qur’anic verses in their daily politeness discourse. This aspect of Islamic culture may look strange, especially to people who come from individualist societies, such as England. Data collection in this study is based on messaging applications like Viber, WhatsApp, and Facebook. After gaining the approval of the participants, there was an investigation for the different aims behind these expressions and the pragmatic function that they perform. It is found that Iraqis tend to incorporate the lexicon of Allah in most of their communication. Such employment is not only by religious people but also by individuals who do not show strong commitment to religion. Furthermore, the social distance and social power between people do not play a significant role in increasing or reducing the rate of using these expressions. A number of these expressions, though can be translated into English, do not have one to one counterpart or reflect religious feeling. In addition, they might sound odd upon being translated or transliterated in oral and written communication in intercultural communication.

Keywords: computer mediated communication (CMC), intercultural communication, politeness, religion, situation bound utterances rituals, speech acts

Procedia PDF Downloads 402
2278 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50