Search results for: glass fiber composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2783

Search results for: glass fiber composites

2003 Layered Fiberconcrete Element Building Technology and Strength

Authors: Vitalijs Lusis, Videvuds-Arijs Lapsa, Olga Kononova, Andrejs Krasnikovs

Abstract:

Steel fibres use in a concrete, such way obtaining Steel Fibre Reinforced Concrete (SFRC), is an important technological direction in building industry. Steel fibers are substituting the steel bars in conventional concrete in another situation is possible to combine them in the concrete structures. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiber concrete with homogeneously dispersed fibers is not optimal (majority of added fibers are not participating in a load bearing process). It is obvious, that is possible to create constructions with oriented fibers distribution in them, in different ways. Present research is devoted to one of them. Acknowledgment: This work has been supported by the European Social Fund within the project «Support for the implementation of doctoral studies at Riga Technical University» and project No. 2013/0025/1DP/1.1.1.2.0/13/APIA/VIAA/019 “New “Smart” Nanocomposite Materials for Roads, Bridges, Buildings and Transport Vehicle”.

Keywords: fiber reinforced concrete, 4-point bending, steel fiber, SFRC

Procedia PDF Downloads 626
2002 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 435
2001 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 158
2000 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 522
1999 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 105
1998 Ceramic Composites and Its Applications for Pb Adsorption

Authors: C. L. Popa, S. L. Iconaru, A. Costescu, C. S. Ciobanu, M. Motelica Heino, R. Guegan, D. Predoi

Abstract:

Surface functionalization of ceramic composites with a special focus on tetraethyl orthosilicate (TEOS) and hydroxyapatite (HAp) is discoursed. Mesoporous ceramic HAp-TEOS composites were prepared by the incorporation of hydroxyapatite into tetraethyl orthosilicate by sol-gel method. The resulting samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy and nitrogen physisorption. The removal of Pb2+ ions from aqueous solutions was evaluated using Atomic Absorbtion Spectroscopy (AAS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled Pb2+ at pH ~ 3 and pH ~ 5. After removal experiment of Pb2+ at pH 3 and pH 5, porous hydroxyapatite nanoparticles is transformed into PbHAp_3 and PbHAp_5 via the adsorption of Pb2+ ions followed by the cation exchange reaction. The diffraction patterns show that THAp nanoparticles were successfully coated with teos without any structural changes. On the other, the AAS analysis showed that THAp can be useful in the removal Pb2+ from water contaminated.

Keywords: teos, hydroxyapatite, environment applications, biosystems engineering

Procedia PDF Downloads 379
1997 Precursor Synthesis of Carbon Materials with Different Aggregates Morphologies

Authors: Nikolai A. Khlebnikov, Vladimir N. Krasilnikov, Evgenii V. Polyakov, Anastasia A. Maltceva

Abstract:

Carbon materials with advanced surfaces are widely used both in modern industry and in environmental protection. The physical-chemical nature of these materials is determined by the morphology of primary atomic and molecular carbon structures, which are the basis for synthesizing the following materials: zero-dimensional (fullerenes), one-dimensional (fiber, tubes), two-dimensional (graphene) carbon nanostructures, three-dimensional (multi-layer graphene, graphite, foams) with unique physical-chemical and functional properties. Experience shows that the microscopic morphological level is the basis for the creation of the next mesoscopic morphological level. The dependence of the morphology on the chemical way and process prehistory (crystallization, colloids formation, liquid crystal state and other) is the peculiarity of the last called level. These factors determine the consumer properties of carbon materials, such as specific surface area, porosity, chemical resistance in corrosive environments, catalytic and adsorption activities. Based on the developed ideology of thin precursor synthesis, the authors discuss one of the approaches of the porosity control of carbon-containing materials with a given aggregates morphology. The low-temperature thermolysis of precursors in a gas environment of a given composition is the basis of the above-mentioned idea. The processes of carbothermic precursor synthesis of two different compounds: tungsten carbide WC:nC and zinc oxide ZnO:nC containing an impurity phase in the form of free carbon were selected as subjects of the research. In the first case, the transition metal (tungsten) forming carbides was the object of the synthesis. In the second case, there was selected zinc that does not form carbides. The synthesis of both kinds of transition metals compounds was conducted by the method of precursor carbothermic synthesis from the organic solution. ZnO:nC composites were obtained by thermolysis of succinate Zn(OO(CH2)2OO), formate glycolate Zn(HCOO)(OCH2CH2O)1/2, glycerolate Zn(OCH2CHOCH2OH), and tartrate Zn(OOCCH(OH)CH(OH)COO). WC:nC composite was synthesized from ammonium paratungstate and glycerol. In all cases, carbon structures that are specific for diamond- like carbon forms appeared on the surface of WC and ZnO particles after the heat treatment. Tungsten carbide and zinc oxide were removed from the composites by selective chemical dissolution preserving the amorphous carbon phase. This work presents the results of investigating WC:nC and ZnO:nC composites and carbon nanopowders with tubular, tape, plate and onion morphologies of aggregates that are separated by chemical dissolution of WC and ZnO from the composites by the following methods: SEM, TEM, XPA, Raman spectroscopy, and BET. The connection between the carbon morphology under the conditions of synthesis and chemical nature of the precursor and the possibility of regulation of the morphology with the specific surface area up to 1700-2000 m2/g of carbon-structured materials are discussed.

Keywords: carbon morphology, composite materials, precursor synthesis, tungsten carbide, zinc oxide

Procedia PDF Downloads 329
1996 Study on Parallel Shear Stress of Cement-Wood Composites Using Pinus sp. and Eucalyptus sp. in natura and Treated with CCA

Authors: Rodrigo D. S. Oliveira, Sarah David-Muzel, Maristela Gava, Victor A. De Araujo, Glaucia A. Prates, Juliana Cortez-Barbosa

Abstract:

Improper disposal of treated wood waste is a problem of the timber sector, since this residue is toxic, due to the harmful characteristics of the preservative substances. An environmentally friendly alternative is the use of this waste for the production of cement-wood composites. The aim of this work was to study the possibility of using wood treated with CCA (Chromated Cooper Arsenate) in cement-wood. Specimens of Pinus sp. and Eucalyptus sp. were produced with wood raw in natura and treated with CCA. A test was performed to determine the parallel shear stress of samples after 14 days of drying, according to the Brazilian Standard NBR-7215/97. Based on the analyzed results it is concluded that the use of wood treated with CCA is not feasible in cement-wood production, because the composite samples of treated wood showed lower mechanical strength in shear stress than those with wood in natura.

Keywords: waste recovery, wood composites, cement-wood, wood preservation, chromated copper arsenate

Procedia PDF Downloads 611
1995 Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal

Authors: Min Sik Kim, Hwa Sung Shin

Abstract:

From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm.

Keywords: nemertean, TTX, fiber mat, activated charcoal, zebrafish

Procedia PDF Downloads 202
1994 Using Mechanical Alloying for Verification of Predicted Glass Forming Composition Range

Authors: F. Saadi, M. Fatahi, M. Heidari

Abstract:

Aim of this work was to determine the approximate glass forming composition range of Ni-Sn system for the alloys produced by mechanical alloying. It was predicted by Miedema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Ni-40Sn had the most susceptibility to produce amorphous alloy. In the next stage, some different compositions of Ni-Sn were mechanically alloyed, where one of them had the proper predicted composition. Products were characterized by XRD analysis. There was a good agreement between calculation and experiments, in which Ni-40Sn alloy had the most amorphization degree.

Keywords: Ni-Sn system, mechanical alloying, Amorphous alloy, Miedema model

Procedia PDF Downloads 426
1993 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band

Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov

Abstract:

This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.

Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization

Procedia PDF Downloads 152
1992 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams

Authors: Saruhan Kartal, Ilker Kalkan

Abstract:

The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.

Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment

Procedia PDF Downloads 135
1991 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles

Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri

Abstract:

Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.

Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid

Procedia PDF Downloads 325
1990 Fuzzy Decision Making to the Construction Project Management: Glass Facade Selection

Authors: Katarina Rogulj, Ivana Racetin, Jelena Kilic

Abstract:

In this study, the fuzzy logic approach (FLA) was developed for construction project management (CPM) under uncertainty and duality. The focus was on decision making in selecting the type of the glass facade for a residential-commercial building in the main design. The adoption of fuzzy sets was capable of reflecting construction managers’ reliability level over subjective judgments, and thus the robustness of the system can be achieved. An α-cuts method was utilized for discretizing the fuzzy sets in FLA. This method can communicate all uncertain information in the optimization process, taking into account the values of this information. Furthermore, FLA provides in-depth analyses of diverse policy scenarios that are related to various levels of economic aspects when it comes to the construction projects' valid decision making. The developed approach is applied to CPM to demonstrate its applicability. Analyzing the materials of glass facades, variants were defined. The development of the FLA for the CPM included relevant construction projec'ts stakeholders that were involved in the criteria definition to evaluate each variant. Using fuzzy Decision-Making Trial and Evaluation Laboratory Method (DEMATEL) comparison of the glass facade was conducted. This way, a rank, according to the priorities for inclusion into the main design, of variants is obtained. The concept was tested on a residential-commercial building in the city of Rijeka, Croatia. The newly developed methodology was then compared with the existing one. The aim of the research was to define an approach that will improve current judgments and decisions when it comes to the material selection of buildings facade as one of the most important architectural and engineering tasks in the main design. The advantage of the new methodology compared to the old one is that it includes the subjective side of the managers’ decisions, as an inevitable factor in each decision making. The proposed approach can help construction projects managers to identify the desired type of glass facade according to their preference and practical conditions, as well as facilitate in-depth analyses of tradeoffs between economic efficiency and architectural design.

Keywords: construction projects management, DEMATEL, fuzzy logic approach, glass façade selection

Procedia PDF Downloads 132
1989 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance

Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta

Abstract:

Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.

Keywords: glass plates, human impact test, modal test, plate boundary conditions

Procedia PDF Downloads 303
1988 Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding

Authors: Ehsan Alishahi, Chuang Deng

Abstract:

Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon.

Keywords: ARB, crystalline-amorphous composites, mechanical alloying, nanoindentation hardness

Procedia PDF Downloads 546
1987 Elaboration and Characterization of in-situ CrC- Ni(Al, Cr) Composites Elaborated from Ni and Cr₂AlC Precursors

Authors: A. Chiker, A. Benamor, A. Haddad, Y. Hadji, M. Hadji

Abstract:

Metal matrix composites (MMCs) have been of big interest for a few decades. Their major drawback lies in their enhanced mechanical performance over unreinforced alloys. They found ground in many engineering fields, such as aeronautics, aerospace, automotive, and other structural applications. One of the most used alloys as a matrix is nickel alloys, which meet the need for high-temperature mechanical properties; some attempts have been made to develop nickel base composites reinforced by high melt point and high modulus particulates. Among the carbides used as reinforcing particulates, chromium carbide is interesting for wear applications; it is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Moreover, a set of properties make it suitable for use in MMCs, such as toughness, the good corrosion and oxidation resistance of its three polymorphs -the cubic (Cr23C6), the hexagonal (Cr7C3), and the orthorhombic (Cr3C2)-, and it’s coefficient of thermal expansion that is almost equal to that of metals. The in-situ synthesis of CrC-reinforced Ni matrix composites could be achieved by the powder metallurgy route. To ensure the in-situ reactions during the sintering process, the use of phase precursors is necessary. Recently, new precursor materials have been proposed; these materials are called MAX phases. The MAX phases are thermodynamically stable nano-laminated materials displaying unusual and sometimes unique properties. These novel phases possess Mn+1AXn chemistry, where n is 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is C or N. Herein, the pressureless sintering method is used to elaborate Ni/Cr2AlC composites. Four composites were elaborated from 5, 10, 15 and 20 wt% of Cr2AlC MAX phase precursor which fully reacted with Ni-matrix at 1100 °C sintering temperature for 4 h in argon atmosphere. XRD results showed that Cr2AlC MAX phase was totally decomposed forming chromium carbide Cr7C3, and the released Al and Cr atoms diffused in Ni matrix giving rise to γ-Ni(Al,Cr) solid solution and γ’-Ni3(Al,Cr) intermetallic. Scanning Electron Microscopy (SEM) of the elaborated samples showed the presence of nanosized Cr7C3 reinforcing particles embedded in the Ni metal matrix, which have a direct impact on the tribological properties of the composites and their hardness. All the composites exhibited higher hardness than pure Ni; whereas adding 15 wt% of Cr2AlC gives the highest hardness (1.85 GPa). Using a ball-on-disc tribometer, dry sliding tests for the elaborated composites against 100Cr6 steel ball were studied under different applied loads. The microstructures and worn surface characteristics were then analyzed using SEM and Raman spectroscopy. The results show that all the composites exhibited better wear resistance compared to pure Ni, which could be explained by the formation of a lubricious tribo-layer during sliding and the good bonding between the Ni matrix and the reinforcing phases.

Keywords: composites, microscopy, sintering, wear

Procedia PDF Downloads 67
1986 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 217
1985 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 652
1984 Evaluation of Fire Resistance of High Strength Reinforced Concrete Columns with Spiral Wire Rope

Authors: Ki-Seok Kwon, Heung-Youl Kim

Abstract:

This research evaluated fire resistances of high-strengthened reinforced concrete (RC) column, spiral wire rope which applied with 60, and 100MPa. The fire resistance test of RC column with loading condition was conducted following the ISO 834 (3 hours). This experiment set mixing of fiber (PP fiber, Steel fiber) and types of horizontal reinforcement as a variable of reinforcement method. The fire resistance test measured the main steel bar’s max and mean temperatures also the shrinkage and shrinking ratio of columns(500 X 500 X 3,000mm) with loadings. As a result, the specimen of 60MPa attained three hours fire resistance with only spiral wire rope. Also, the specimen of 100MPa must be reinforced with fibers and spiral wire rope to attain three hours fire resistance.

Keywords: reinforced concrete column, high strength concrete, wire rope, fire resistance test

Procedia PDF Downloads 321
1983 Characterization of Biocomposites Based on Mussel Shell Wastes

Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk

Abstract:

Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.

Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties

Procedia PDF Downloads 309
1982 Tricalcium Phosphate-Chitosan Composites for Tissue Engineering Applications

Authors: G. Voicu, C. D. Ghitulica, A. Cucuruz, C. Busuioc

Abstract:

In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of calcium phosphate-natural biopolymer composites represents a choice of many scientific groups. Thus, tricalcium phosphate powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents. Moreover, the substitution of calcium with magnesium have been approached, in the 5-10 wt.% range. Afterwards, the phosphate powders were integrated into two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as phosphate powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.

Keywords: bone reconstruction, chitosan, composite scaffolds, tricalcium phosphate

Procedia PDF Downloads 240
1981 Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis

Authors: Faruk Ortes, Baris Sayin, Tarik Serhat Bozkurt, Cemil Akcay

Abstract:

The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams.

Keywords: numerical model, FEA, RC beam, NSM technique, CFRP rod, filling material

Procedia PDF Downloads 592
1980 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites

Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi

Abstract:

Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.

Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging

Procedia PDF Downloads 350
1979 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 186
1978 Mesoporous Material Nanofibers by Electrospinning

Authors: Sh. Sohrabnezhad, A. Jafarzadeh

Abstract:

In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.

Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques

Procedia PDF Downloads 244
1977 Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems

Authors: Elżbieta Cygan, Bączek, Piotr Wyżga

Abstract:

This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw.

Keywords: abrasive wear resistance, metal matrix composites, sintered diamond tools, Spark Plasma Sintering

Procedia PDF Downloads 72
1976 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 235
1975 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: constitutive model, fiber-matrix, hyperelasticity, interaction, ligament, tendon

Procedia PDF Downloads 294
1974 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 126