Search results for: formaldehyde and heat treatments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4751

Search results for: formaldehyde and heat treatments

3971 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains

Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang

Abstract:

Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.

Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment

Procedia PDF Downloads 113
3970 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater

Procedia PDF Downloads 172
3969 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials

Authors: Bouchou Aïssa, Mohamed Akbi

Abstract:

Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K  813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K  823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K  813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.

Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment

Procedia PDF Downloads 413
3968 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 72
3967 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs

Authors: Varun Goel

Abstract:

Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4-16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.

Keywords: artificial roughness, solar air heater, triangular duct, V-shaped ribs

Procedia PDF Downloads 449
3966 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 313
3965 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 299
3964 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 134
3963 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France

Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet

Abstract:

Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.

Keywords: air temperature, neural network model, urban heat island, urban weather generator

Procedia PDF Downloads 87
3962 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 241
3961 Hydraulic Optimization of an Adjustable Spiral-Shaped Evaporator

Authors: Matthias Feiner, Francisco Javier Fernández García, Michael Arneman, Martin Kipfmüller

Abstract:

To ensure reliability in miniaturized devices or processes with increased heat fluxes, very efficient cooling methods have to be employed in order to cope with small available cooling surfaces. To address this problem, a certain type of evaporator/heat exchanger was developed: It is called a swirl evaporator due to its flow characteristic. The swirl evaporator consists of a concentrically eroded screw geometry in which a capillary tube is guided, which is inserted into a pocket hole in components with high heat load. The liquid refrigerant R32 is sprayed through the capillary tube to the end face of the blind hole and is sucked off against the injection direction in the screw geometry. Its inner diameter is between one and three millimeters. The refrigerant is sprayed into the pocket hole via a small tube aligned in the center of the bore hole and is sucked off on the front side of the hole against the direction of injection. The refrigerant is sucked off in a helical geometry (twisted flow) so that it is accelerated against the hot wall (centrifugal acceleration). This results in an increase in the critical heat flux of up to 40%. In this way, more heat can be dissipated on the same surface/available installation space. This enables a wide range of technical applications. To optimize the design for the needs in various fields of industry, like the internal tool cooling when machining nickel base alloys like Inconel 718, a correlation-based model of the swirl-evaporator was developed. The model is separated into 3 subgroups with overall 5 regimes. The pressure drop and heat transfer are calculated separately. An approach to determine the locality of phase change in the capillary and the swirl was implemented. A test stand has been developed to verify the simulation.

Keywords: helically-shaped, oil-free, R-32, swirl-evaporator, twist-flow

Procedia PDF Downloads 105
3960 Effect of Supplementing Different Sources and Levels of Phytase Enzyme to Diets on Productive Performance for Broiler Chickens

Authors: Sunbul Jassim Hamodi, Muna Khalid Khudayer, Firas Muzahem Hussein

Abstract:

The experiment was conducted to study the effect of supplement sources of Phytase enzyme (bacterial, fungal, enzymes mixture) using levels (250, 500, 750) FTY/ kg feed to diets compared with control on the performance for one thousand fifty broiler chicks (Ross 308) from 1day old with initial weight 39.78 gm till 42 days. The study involved 10 treatments, three replicates per treatment (35 chicks/replicate). Treatments were as follows: T1: control diet (without any addition). T2: added bacterial phytase enzyme 250FTY/ kg feed. T3: added bacterial phytase enzyme 500FTY/ kg feed. T4: added bacterial phytase enzyme 750FTY/ kg feed. T5: added fungal phytase enzyme 250FTY/ kg feed. T6: added fungal phytase enzyme 500FTY/ kg feed. T7: added fungal phytase enzyme 750FTY/ kg feed. T8 added enzymes mixture 250U/ kg feed. T9: added enzymes mixture 500U/ kg feed. T10: added enzymes mixture 750U/ kg feed. The results revealed that supplementing 750 U from enzymes mixture to broiler diet increased significantly (p <0.05) body weight compared with (250 FTY bacterial phytase/Kgfeed), (750 FTY bacterial phytase/Kg feed), (750FTY fungal phytase/Kgfeed) at 6 weeks, also supplemented different sources and levels from phytase enzyme improved a cumulative weight gain for (500 FTY bacterial phytase/Kgfeed), (250FTY fungal phytase/Kgfeed), (500FTY fungal phytase/Kgfeed), (250 Uenzymes mixture/Kgfeed), (500 Uenzymes mixture/Kgfeed) and (750 U enzymes mixture/Kgfeed) treatments compared with (750 FTY fungal phytase/Kgfeed)treatment, about accumulative feed consumption (500 FTY fungal phytase/Kgfeed) and (250 Uenzymes mixture/Kgfeed) increased significantly compared with control group and (750FTY fungal phytase/Kgfeed) during 1-6 weeks. There were significantly improved in cumulative feed conversion for (500U enzymes mixture/Kgfeed) compared with the worse feed conversion ratio that recorded in (250 FTY bacterial phytase/Kgfeed). No significant differences between treatments in internal organs relative weights, carcass cuts, dressing percentage and production index. Mortality was increased in (750FTY fungal phytase/Kgfeed) compared with other treatments.

Keywords: phytase, phytic acid, broiler, productive performance

Procedia PDF Downloads 299
3959 Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria

Authors: Timea I. Hajnal-Jafari, Simonida S. Đurić, Dragana R. Stamenov

Abstract:

Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors.

Keywords: bacteria, inoculation, soybean, microbial activity

Procedia PDF Downloads 145
3958 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside

Authors: Benseghir Omar, Bahmed Mohamed

Abstract:

In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.

Keywords: thermal transfer, mixed convection, square cavity, finite volume method

Procedia PDF Downloads 430
3957 Staying Cool in the Heat: How Tropical Finches Behaviorally Adjust to Extreme Heat in the Wild

Authors: Mara F. Müller, Simon C. Griffith, Tara L. Crewe, Mirjam Kaestli, Sydney J. Collett, Ian J. Radford, Hamish A. Campbell

Abstract:

The intensity and frequency of heat waves have been progressively increasing because of climate change. Passerines that inhabit very hot regions are already close to their physiological thermal limit and are thus considered highly susceptible to increased ambient temperatures. However, the extent by which passerines behaviorally compensate for extreme heat in their natural habitat has rarely been assessed due to monitoring challenges. To address this knowledge gap, coded VHF-nano transmitters were attached to a tropical passerine (Gouldian finch, Chloebia gouldiae). Fine-scale activity and movement were monitored throughout the hottest and driest period of the year using an array of static VHF-receivers. The finches were found to typically show a peak activity for a few hours at sunrise and remained relatively quiescent for the rest of the day. However, on extremely hot days (max temperature >38ºC), finches showed higher activity levels earlier in the morning and presented a second peak in the afternoon. Gouldian finches are physiologically challenged when ambient temperatures exceed 38ºC, suggesting the shift in movement activity reflects a behavioral mitigation strategy to extreme heat. These tropical finches already exist on an energetic knife-edge during this time of the year due to resource scarcity. Hence, the increased energetic expenditure to mitigate thermal stress may be detrimental. The study demonstrates the value of VHF-telemetry technology in monitoring the impact of global change on the biology of small-bodied mobile species.

Keywords: animal tracking, biotelemetry, climate change, extreme heat, movement activity, radiotelemetry, VHF-telemetry

Procedia PDF Downloads 85
3956 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood

Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi

Abstract:

Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.

Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls

Procedia PDF Downloads 67
3955 Alterations of Malondialdehyde and Heat Shock Protein-27 in Sheep with Naturally Infected Liver Cystic Echinococcosis

Authors: K. Azimzadeh, S. Rasouli

Abstract:

The present study investigates whether malondialdehyde (MDA) and heat shock protein-27 (HSP-27) are altered in sheep with cystic echinococcosis (CE). For this purpose, forty parasitized and thirty healthy sheep were selected based on severe cystic form observation in liver and lack of blood parasite along with no cystic conformation in carcass respectively. The results revealed a significant decrease (p<0.01) in albumin (Alb) and total plasma protein (TPP) and a significant increase (p<0.01) in HSP-27, MDA, total bilirubin and unconjugated bilirubin in the infected group compared with healthy ones.The results indicate low levels of TPP and Alb reveal liver damage in suffered sheep and MDA elevation demonstrates oxidative stress in infected group. In addition, HSP-27 enhancement may attribute to disease-induced stress conditions.

Keywords: malondialdehyde, heat shock protein-27, Echinococcosis, blood parasites

Procedia PDF Downloads 606
3954 Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien I.Abdel-Shafy

Abstract:

The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments.

Keywords: grey water, water intervals, Syngonium plant, recycling water, vegetative growth

Procedia PDF Downloads 106
3953 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 83
3952 An Integrated Approach to Assessing Urban Nature as an Indicator to Mitigate Urban Heat Island Effect: A Case Study of Lahore, Pakistan

Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi

Abstract:

Rapid urbanization significantly change land use, urban nature, land surface vegetation cover, and heat distribution, leading to the formation of urban heat island (UHI) effect and affecting the healthy growth of cities and the comfort of human living style. Past information and present changes in Land Surface Temperature (LST) and urban landscapes could be useful to geographers, environmentalists, and urban planners in an attempt to shape the urban development process and mitigate the effects of urban heat islands (UHI). This study aims at using Satellite Remote Sensing (SRS) and GIS techniques to develop an approach for assessing the urban nature and UHI effects in Lahore, Pakistan. The study employed the Radiative Transfer Method (RTM) in estimating LST to assess the SUHI effect during the interval of 20 years (2000-2020). The assessment was performed by the available Landsat 7/ETM+ and Landsat 8/OIL_TIRs data for the years 2000, 2010, and 2020 respectively. Pearson’s correlation and normalized mutual information were applied to investigate the relationship between green space characteristics and LST. The result of this work revealed that the influence of urban heat island is not always at the city centers but sometimes in the outskirt where a lot of development activities were going on towards the direction of expansion of Lahore, Pakistan. The present study explores the usage of image processing and spatial analysis in the drive towards achieving urban greening of Lahore and a sustainable urban environment in terms of urban planning, policy, and decision making and promoting the healthy and sustainable urban environment of the city.

Keywords: urban nature, urban heat islands, urban green space, land use, Lahore

Procedia PDF Downloads 112
3951 Finite Difference Modelling of Temperature Distribution around Fire Generated Heat Source in an Enclosure

Authors: A. A. Dare, E. U. Iniegbedion

Abstract:

Industrial furnaces generally involve enclosures of fire typically initiated by the combustion of gases. The fire leads to temperature distribution inside the enclosure. A proper understanding of the temperature and velocity distribution within the enclosure is often required for optimal design and use of the furnace. This study was therefore directed at numerical modeling of temperature distribution inside an enclosure as typical in a furnace. A mathematical model was developed from the conservation of mass, momentum and energy. The stream function-vorticity formulation of the governing equations was solved by an alternating direction implicit (ADI) finite difference technique. The finite difference formulation obtained were then developed into a computer code. This was used to determine the temperature, velocities, stream function and vorticity. The effect of the wall heat conduction was also considered, by assuming a one-dimensional heat flow through the wall. The computer code (MATLAB program) developed was used for the determination of the aforementioned variables. The results obtained showed that the transient temperature distribution assumed a uniform profile which becomes more chaotic with increasing time. The vertical velocity showed increasing turbulent behavior with time, while the horizontal velocity assumed decreasing laminar behavior with time. All of these behaviours were equally reported in the literature. The developed model has provided understanding of heat transfer process in an industrial furnace.

Keywords: heat source, modelling, enclosure, furnace

Procedia PDF Downloads 252
3950 Advances in the Environmentally Friendly Management of Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae)

Authors: Farhan Nayyar, A. Batool

Abstract:

The red palm weevil (RPW), being the most invasive insect pest of palm family, is considered as the most dangerous pest around the globe. As three out of four life stages of weevils are concealed inside the host plants, leaving only the adult stage for controlling it. The use of sex pheromone (Ferrugineol) for the management of red palm weevil is considered as the most rewarding technique of IPM. The current studies were conducted to find the relative potential of four different treatments including Sex pheromone, sex pheromone + date fruit + sugarcane pieces, sex pheromone + ethyl acetate and sex pheromone + jaggary water applied on the attraction behavior of weevils. The treatments were applied randomly at two different locations of Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan including Germ Plasm Unit (GPU) and fruit nursery farm having date palm plants of different ages of four varieties of date palm. The treatments were applied for three consecutive months, including February, March, and April 2022. The pheromone traps were installed at the height of two feet under shade on the western side of date palm plants. The results revealed that among the treatments, T4 consisting of Jaggary water and sex pheromone was found as the most effective treatment and attracted the maximum number of 127 weevils followed by T3 consisting of ethyl acetate and sex pheromone, attracting 53 weevils. In contrast to this, T2 consisting of sex pheromone and date fruit was found as the least effective treatment in attracting red palm weevil and attracted only 15 adult weevils. Among the two selected locations, the population of red palm weevil was found comparatively higher at GPU compared to the nursery farm, Dera Ismail Khan. In conclusion, T4 may be used for the effective and safer management of red palm weevil.

Keywords: red palm weevil, integrated management, sex pheromones, Jaggary water

Procedia PDF Downloads 94
3949 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated numerically. The physical model is a square enclosure with insulated top and bottom horizontal walls while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60, and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in the different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: nanofluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number

Procedia PDF Downloads 391
3948 Storage Influence on Physico-Chemical Composition and Antioxidant Activity of Jamun Drink Prepared From Two Types of Pulp

Authors: Muhammad Atif Randhawa, Mahreen Akhtar, Sidrah

Abstract:

In this paper, Jamun (Syzygium cumini; Myrtaceae) drink enriched with jamun pulp and seed was assessed for different physicochemical parameters (titratable acidity, pH, TSS, ascorbic acid, and total sugars and reducing sugars) and phytochemical aspects at every 15 days interval till 60 days storage period. Jamun pulp both with seed and without seed were used at levels of 7, 10 and 13 percent to prepare jamun drink in six combinations; T1 (7% pulp without seed), T2 (10% pulp without seed), T3 (13% pulp without seed), T4 (7% pulp with seed), T5 (10% pulp with seed), T6 (13% pulp with seed). Storage period resulted decrease in pH (4.18 to 4.08) and ascorbic acid (21.92%) significantly along with phenolic contents (6.13 to 4.85g of GAE/kg) and antioxidant activity (70.68 to 48.62 percent) within treatments. All treatments showed significant increases in total sugars (11.59 to 11.80%), reducing sugars (2.30 to 2.50%), TSS (12.2 to 13.32 °B) and acidity (0.23% to 0.31%) during storage. Treatments T3, T5 and T6 showed best results in terms of all physicochemical parameters during storage. Statistically significant differences were obtained among sensory parameters as a function of pulp type and concentration, while treatment T5 (10% pulp with seed) obtained highest score (7.16) in terms of all sensory parameters. It can be concluded that nutrient rich jamun drink can be prepared as an attempt to add value to the underutilized jamun fruit of Pakistan.

Keywords: antioxidant activity, Jamun beverage, physicochemical, storage

Procedia PDF Downloads 307
3947 Effective of Different Doses of Bacterial Insecticide Against Trogoderma Granarium (Everts)

Authors: Fatima Huda Hallak

Abstract:

The current study aimed to evaluate the activity of bacterial insecticide Vertinic against the second star larvae of Trogoderma granarium (Everts) by four treatments: A, B, C, D, at seven concentrations: 0.001, 0.01, 0.1,1,10,100,1000 PPM. The mortality rate of larvae was 100% at concentrations 10 and 100 in treatments A and B after 24 hours and after 48 hours in treatment D at 1 PPM. The efficiency of treatment A was greater as compared to treatment B at all concentrations and all exposure times. The efficiency of treatment D was greater as compared to treatment C; for example, at 0.001, 0.01, 0.1, 1 PPM, after 120 hours, the Mortality rate of larve was 6.76, 13.33, 43.33, 100% in treatment D, which it was 0.00, 0.00, 23.33, 96.67%, respectively in the treatment C.

Keywords: bacterial insecticide, trogoderma granarium (everts), fourth star larvae, vertimic

Procedia PDF Downloads 46
3946 Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status

Authors: A. L. Qureshi, A. A. Mahessar, R. K. Dashti, S. M. Yasin

Abstract:

In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season.

Keywords: conjunctive use, cotton crop, groundwater, soil salinity status, water use efficiency

Procedia PDF Downloads 445
3945 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions

Authors: M. Tarik Boyraz, M. Bilge Imer

Abstract:

Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.

Keywords: heat treatment, IN738LC, simulations, super-alloys

Procedia PDF Downloads 245
3944 Integration of Thermal Energy Storage and Electric Heating with Combined Heat and Power Plants

Authors: Erich Ryan, Benjamin McDaniel, Dragoljub Kosanovic

Abstract:

Combined heat and power (CHP) plants are an efficient technology for meeting the heating and electric needs of large campus energy systems, but have come under greater scrutiny as the world pushes for emissions reductions and lower consumption of fossil fuels. The electrification of heating and cooling systems offers a great deal of potential for carbon savings, but these systems can be costly endeavors due to increased electric consumption and peak demand. Thermal energy storage (TES) has been shown to be an effective means of improving the viability of electrified systems, by shifting heating and cooling load to off-peak hours and reducing peak demand charges. In this study, we analyze the integration of an electrified heating and cooling system with thermal energy storage into a campus CHP plant, to investigate the potential of leveraging existing infrastructure and technologies with the climate goals of the 21st century. A TRNSYS model was built to simulate a ground source heat pump (GSHP) system with TES using measured campus heating and cooling loads. The GSHP with TES system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Using known CHP production information, costs and emissions were investigated for a unique large energy user rate structure that operates a CHP plant. The results highlight the cost and emissions benefits of a targeted integration of heat pump technology within the framework of existing CHP systems, along with the performance impacts and value of TES capability within the combined system.

Keywords: thermal energy storage, combined heat and power, heat pumps, electrification

Procedia PDF Downloads 86
3943 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 317
3942 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution

Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal

Abstract:

Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.

Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice

Procedia PDF Downloads 366