Search results for: demand models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9711

Search results for: demand models

8931 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 337
8930 Measurement of CES Production Functions Considering Energy as an Input

Authors: Donglan Zha, Jiansong Si

Abstract:

Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.

Keywords: bias of technical change, CES production function, elasticity of substitution, energy input

Procedia PDF Downloads 282
8929 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
8928 A Strategic Approach in Utilising Limited Resources to Achieve High Organisational Performance

Authors: Collen Tebogo Masilo, Erik Schmikl

Abstract:

The demand for the DataMiner product by customers has presented a great challenge for the vendor in Skyline Communications in deploying its limited resources in the form of human resources, financial resources, and office space, to achieve high organisational performance in all its international operations. The rapid growth of the organisation has been unable to efficiently support its existing customers across the globe, and provide services to new customers, due to the limited number of approximately one hundred employees in its employ. The combined descriptive and explanatory case study research methods were selected as research design, making use of a survey questionnaire which was distributed to a sample of 100 respondents. A sample return of 89 respondents was achieved. The sampling method employed was non-probability sampling, using the convenient sampling method. Frequency analysis and correlation between the subscales (the four themes) were used for statistical analysis to interpret the data. The investigation was conducted into mechanisms that can be deployed to balance the high demand for products and the limited production capacity of the company’s Belgian operations across four aspects: demand management strategies, capacity management strategies, communication methods that can be used to align a sales management department, and reward systems in use to improve employee performance. The conclusions derived from the theme ‘demand management strategies’ are that the company is fully aware of the future market demand for its products. However, there seems to be no evidence that there is proper demand forecasting conducted within the organisation. The conclusions derived from the theme 'capacity management strategies' are that employees always have a lot of work to complete during office hours, and, also, employees seem to need help from colleagues with urgent tasks. This indicates that employees often work on unplanned tasks and multiple projects. Conclusions derived from the theme 'communication methods used to align sales management department with operations' are that communication is not good throughout the organisation. This means that information often stays with management, and does not reach non-management employees. This also means that there is a lack of smooth synergy as expected and a lack of good communication between the sales department and the projects office. This has a direct impact on the delivery of projects to customers by the operations department. The conclusions derived from the theme ‘employee reward systems’ are that employees are motivated, and feel that they add value in their current functions. There are currently no measures in place to identify unhappy employees, and there are also no proper reward systems in place which are linked to a performance management system. The research has made a contribution to the body of research by exploring the impact of the four sub-variables and their interaction on the challenges of organisational productivity, in particular where an organisation experiences a capacity problem during its growth stage during tough economic conditions. Recommendations were made which, if implemented by management, could further enhance the organisation’s sustained competitive operations.

Keywords: high demand for products, high organisational performance, limited production capacity, limited resources

Procedia PDF Downloads 144
8927 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: criminal digital evidence, social media, ontologies, reasoning

Procedia PDF Downloads 388
8926 Accurate Energy Assessment Technique for Mine-Water District Heat Network

Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones

Abstract:

UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.

Keywords: heat demand, heat pump, renewable energy, retrofit

Procedia PDF Downloads 93
8925 Groundwater Pollution Models for Hebron/Palestine

Authors: Hassan Jebreen

Abstract:

These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.

Keywords: groundwater, models, pollutants, wadis, hebron

Procedia PDF Downloads 439
8924 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
8923 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 140
8922 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 334
8921 The Effect of Applying the Electronic Supply System on the Performance of the Supply Chain in Health Organizations

Authors: Sameh S. Namnqani, Yaqoob Y. Abobakar, Ahmed M. Alsewehri, Khaled M. AlQethami

Abstract:

The main objective of this research is to know the impact of the application of the electronic supply system on the performance of the supply department of health organizations. To reach this goal, the study adopted independent variables to measure the dependent variable (performance of the supply department), namely: integration with suppliers, integration with intermediaries and distributors and knowledge of supply size, inventory, and demand. The study used the descriptive method and was aided by the questionnaire tool that was distributed to a sample of workers in the Supply Chain Management Department of King Abdullah Medical City. After the statistical analysis, the results showed that: The 70 sample members strongly agree with the (electronic integration with suppliers) axis with a p-value of 0.001, especially with regard to the following: Opening formal and informal communication channels between management and suppliers (Mean 4.59) and exchanging information with suppliers with transparency and clarity (Mean 4.50). It also clarified that the sample members agree on the axis of (electronic integration with brokers and distributors) with a p-value of 0.001 and this is represented in the following elements: Exchange of information between management, brokers and distributors with transparency, clarity (Mean 4.18) , and finding a close cooperation relationship between management, brokers and distributors (Mean 4.13). The results also indicated that the respondents agreed to some extent on the axis (knowledge of the size of supply, stock, and demand) with a p-value of 0.001. It also indicated that the respondents strongly agree with the existence of a relationship between electronic procurement and (the performance of the procurement department in health organizations) with a p-value of 0.001, which is represented in the following: transparency and clarity in dealing with suppliers and intermediaries to prevent fraud and manipulation (Mean 4.50) and reduce the costs of supplying the needs of the health organization (Mean 4.50). From the results, the study recommended several recommendations, the most important of which are: that health organizations work to increase the level of information sharing between them and suppliers in order to achieve the implementation of electronic procurement in the supply management of health organizations. Attention to using electronic data interchange methods and using modern programs that make supply management able to exchange information with brokers and distributors to find out the volume of supply, inventory, and demand. To know the volume of supply, inventory, and demand, it recommended the application of scientific methods of supply for storage. Take advantage of information technology, for example, electronic data exchange techniques and documents, where it can help in contact with suppliers, brokers, and distributors, and know the volume of supply, inventory, and demand, which contributes to improving the performance of the supply department in health organizations.

Keywords: healthcare supply chain, performance, electronic system, ERP

Procedia PDF Downloads 136
8920 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China

Authors: Yan-Shen Yang, Bai-Chen Xie

Abstract:

Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.

Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model

Procedia PDF Downloads 147
8919 An Economic Analysis of Bottled Drinking Water Industry in India

Authors: Swadhin Mondal

Abstract:

While safe drinking water is an effective defense against the infection of water borne diseases, a large number of populations suffering from these diseases do not have access to safe drinking water due inadequacy of supply. Private entrepreneurs entered this sector and made bottled drinking water available by supplying various kinds of bottled water. In this study we found that the bottled drinking water industry has experienced a spectacular growth over the past two decades and it has a huge growth potential because of rising demand for safe drinking. High profit margin (217 %) is the main attraction to the entrepreneur to invest in this industry. Health awareness, lack of safe drinking water facilities, rising income, urbanization, migration and rising trend in tourism industries are the major influencing factors of demand for bottled drinking water (BDW). This industry also partially fulfills the demand for drinking water. More than 2 percent of household’s demands were met by this industry and many more households (additional 4 percent) coping with BDW during water crisis. Poor households spend around 4 percent of their total monthly household’s consumption expenditure on BDW which may have an adverse impact on household because households could have spent this for purchasing other goods. Like other developed counties, a large section of Indian households are shifting from their traditional sources of water to BDW. However, there are some concerns about the quality of BDW. Many cases, BDW contains chemical toxins at more than permissible level that can be harmful for health. Hence, there is an urgent need for appropriate intervention to regulate price, reduce potential harm and improve the quality of water provided by this industry.

Keywords: drinking water, public health public failure, privatization, development, public policy

Procedia PDF Downloads 335
8918 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
8917 India’s Energy System Transition, Survival of the Greenest

Authors: B. Sudhakara Reddy

Abstract:

The transition to a clean and green energy system is an economic and social transformation that is exciting as well as challenging. The world today faces a formidable challenge in transforming its economy from being driven primarily by fossil fuels, which are non-renewable and a major source of global pollution, to becoming an economy that can function effectively using renewable energy sources and by achieving high energy efficiency levels. In the present study, a green economy scenario is developed for India using a bottom-up approach. The results show that the penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. Improvements in energy efficiency (e.g. households, industrial and commercial sectors) will result in reduced demand to the tune of 318 MTOE. The volume of energy-related CO2 emissions decline to 2,218 Mt in 2030 from 3,440 under the BAU scenario and the per capita emissions will reduce by about 35% (from 2.22 to 1.45) under the GE scenario. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. total import bill (coal and oil) will amount to US$ 334 billion by 2030 (at 2010/11 prices), but as per the GE scenario, it would be US$ 194.2 billion, a saving of about US$ 140 billion. The building of a green energy economy can also serve another purpose: to develop new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. The differences between the baseline and green energy scenarios are not so much the consequence of the diffusion of various technologies. It is the result of the active roles of different actors and the drivers that become dominant.

Keywords: emissions, green energy, fossil fuels, green jobs, renewables, scenario

Procedia PDF Downloads 532
8916 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
8915 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 125
8914 Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin in Western Ethiopia

Authors: Elias Jemal Abdella

Abstract:

The Blue Nile River is an important shared resource of Ethiopia, Sudan and also, because it is the major contributor of water to the main Nile River, Egypt. Despite the potential benefits of regional cooperation and integrated joint basin management, all three countries continue to pursue unilateral plans for development. Besides, there is great uncertainty about the likely impacts of climate change in water availability for existing as well as proposed irrigation and hydropower projects in the Blue Nile Basin. The main objective of this study is to quantitatively assess the impact of climate change on the hydrological regime of the upper Blue Nile basin, western Ethiopia. Three models were combined, a dynamic Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) that is used to determine climate projections for the Upper Blue Nile basin for Representative Concentration Pathways (RCPs) 4.5 and 8.5 greenhouse gas emissions scenarios for the period 2021-2050. The outputs generated from multimodel ensemble of four (4) CORDEX-RCMs (i.e., rainfall and temperature) were used as input to a Soil and Water Assessment Tool (SWAT) hydrological model which was setup, calibrated and validated with observed climate and hydrological data. The outputs from the SWAT model (i.e., projections in river flow) were used as input to a Water Evaluation and Planning (WEAP) water resources model which was used to determine the water resources implications of the changes in climate. The WEAP model was set-up to simulate three development scenarios. Current Development scenario was the existing water resource development situation, Medium-term Development scenario was planned water resource development that is expected to be commissioned (i.e. before 2025) and Long-term full Development scenario were all planned water resource development likely to be commissioned (i.e. before 2050). The projected change of mean annual temperature for period (2021 – 2050) in most of the basin are warmer than the baseline (1982 -2005) average in the range of 1 to 1.4oC, implying that an increase in evapotranspiration loss. Subbasins which already distressed from drought may endure to face even greater challenges in the future. Projected mean annual precipitation varies from subbasin to subbasin; in the Eastern, North Eastern and South western highland of the basin a likely increase of mean annual precipitation up to 7% whereas in the western lowland part of the basin mean annual precipitation projected to decrease by 3%. The water use simulation indicates that currently irrigation demand in the basin is 1.29 Bm3y-1 for 122,765 ha of irrigation area. By 2025, with new schemes being developed, irrigation demand is estimated to increase to 2.5 Bm3y-1 for 277,779 ha. By 2050, irrigation demand in the basin is estimated to increase to 3.4 Bm3y-1 for 372,779 ha. The hydropower generation simulation indicates that 98 % of hydroelectricity potential could be produced if all planned dams are constructed.

Keywords: Blue Nile River, climate change, hydropower, SWAT, WEAP

Procedia PDF Downloads 355
8913 Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)

Authors: H. A. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 419
8912 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
8911 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 151
8910 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 343
8909 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
8908 Assessment of Procurement-Demand of Milk Plant Using Quality Control Tools: A Case Study

Authors: Jagdeep Singh, Prem Singh

Abstract:

Milk is considered as an essential and complete food. The present study was conducted at Milk Plant Mohali especially in reference to the procurement section where the cash inflow was maximum, with the objective to achieve higher productivity and reduce wastage of milk. In milk plant it was observed that during the month of Jan-2014 to March-2014 the average procurement of milk was Rs. 4, 19, 361 liter per month and cost of procurement of milk is Rs 35/- per liter. The total cost of procurement thereby equal to Rs. 1crore 46 lakh per month, but there was mismatch in procurement-production of milk, which leads to an average loss of Rs. 12, 94, 405 per month. To solve the procurement-production problem Quality Control Tools like brainstorming, Flow Chart, Cause effect diagram and Pareto analysis are applied wherever applicable. With the successful implementation of Quality Control tools an average saving of Rs. 4, 59, 445 per month is done.

Keywords: milk, procurement-demand, quality control tools,

Procedia PDF Downloads 532
8907 The Impact of Environmental Dynamism on Strategic Outsourcing Success

Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail

Abstract:

Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.

Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success

Procedia PDF Downloads 501
8906 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
8905 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4

Authors: Ryan A. Black, Stacey A. McCaffrey

Abstract:

Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.

Keywords: instrument development, item response theory, latent trait theory, psychometrics

Procedia PDF Downloads 357
8904 Robust Optimisation Model and Simulation-Particle Swarm Optimisation Approach for Vehicle Routing Problem with Stochastic Demands

Authors: Mohanad Al-Behadili, Djamila Ouelhadj

Abstract:

In this paper, a specific type of vehicle routing problem under stochastic demand (SVRP) is considered. This problem is of great importance because it models for many of the real world vehicle routing applications. This paper used a robust optimisation model to solve the problem along with the novel Simulation-Particle Swarm Optimisation (Sim-PSO) approach. The proposed Sim-PSO approach is based on the hybridization of the Monte Carlo simulation technique with the PSO algorithm. A comparative study between the proposed model and the Sim-PSO approach against other solution methods in the literature has been given in this paper. This comparison including the Analysis of Variance (ANOVA) to show the ability of the model and solution method in solving the complicated SVRP. The experimental results show that the proposed model and Sim-PSO approach has a significant impact on the obtained solution by providing better quality solutions comparing with well-known algorithms in the literature.

Keywords: stochastic vehicle routing problem, robust optimisation model, Monte Carlo simulation, particle swarm optimisation

Procedia PDF Downloads 277
8903 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
8902 Comparative Analysis of Geographical Routing Protocol in Wireless Sensor Networks

Authors: Rahul Malhotra

Abstract:

The field of wireless sensor networks (WSN) engages a lot of associates in the research community as an interdisciplinary field of interest. This type of network is inexpensive, multifunctionally attributable to advances in micro-electromechanical systems and conjointly the explosion and expansion of wireless communications. A mobile ad hoc network is a wireless network without fastened infrastructure or federal management. Due to the infrastructure-less mode of operation, mobile ad-hoc networks are gaining quality. During this work, we have performed an efficient performance study of the two major routing protocols: Ad hoc On-Demand Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) protocols. We have used an accurate simulation model supported NS2 for this purpose. Our simulation results showed that AODV mitigates the drawbacks of the DSDV and provides better performance as compared to DSDV.

Keywords: routing protocol, MANET, AODV, On Demand Distance Vector Routing, DSR, Dynamic Source Routing

Procedia PDF Downloads 275