Search results for: demand elasticity
2819 Assessing the Feasibility of Commercial Meat Rabbit Production in the Kumasi Metropolis of Ghana
Authors: Nana Segu Acquaah-Harrison, James Osei Mensah, Richard Aidoo, David Amponsah, Amy Buah, Gilbert Aboagye
Abstract:
The study aimed at assessing the feasibility of commercial meat rabbit production in the Kumasi Metropolis of Ghana. Structured and unstructured questionnaires were utilized in obtaining information from two hundred meat consumers and 15 meat rabbit farmers. Data were analyzed using Net Present Value (NPV), Internal Rate of Return (IRR), Benefit Cost Ratio (BCR)/Profitability Index (PI) technique, percentages and chi-square contingency test. The study found that the current demand for rabbit meat is low (36%). The desirable nutritional attributes of rabbit meat and other socio economic factors of meat consumers make the potential demand for rabbit meat high (69%). It was estimated that GH¢5,292 (approximately $ 2672) was needed as a start-up capital for a 40-doe unit meat rabbit farm in Kumasi Metropolis. The cost of breeding animals, housing and equipment formed 12.47%, 53.97% and 24.87% respectively of the initial estimated capital. A Net Present Value of GH¢ 5,910.75 (approximately $ 2984) was obtained at the end of the fifth year, with an internal rate return and profitability index of 70% and 1.12 respectively. The major constraints identified in meat rabbit production were low price of rabbit meat, shortage of fodder, pest and diseases, high cost of capital, high cost of operating materials and veterinary care. Based on the analysis, it was concluded that meat rabbit production is feasible in the Kumasi Metropolis of Ghana. The study recommends embarking on mass advertisement; farmer association and adapting to new technologies in the production process will help to enhance productivity.Keywords: feasibility, commercial meat rabbit, production, Kumasi, Ghana
Procedia PDF Downloads 1322818 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System
Authors: A. Rong, P. B. Luh, R. Lahdelma
Abstract:
High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment
Procedia PDF Downloads 3652817 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts
Procedia PDF Downloads 1292816 Expansion of Cord Blood Cells Using a Mix of Neurotrophic Factors
Authors: Francisco Dos Santos, Diogo Fonseca-Pereira, Sílvia Arroz-Madeira, Henrique Veiga-Fernandes
Abstract:
Haematopoiesis is a developmental process that generates all blood cell lineages in health and disease. This relies on quiescent haematopoietic stem cells (HSCs) that are able to differentiate, self renew and expand upon physiological demand. HSCs have great interest in regenerative medicine, including haematological malignancies, immunodeficiencies and metabolic disorders. However, the limited yield from existing HSC sources drives the global need for reliable techniques to expand harvested HSCs at high quality and sufficient quantities. With the extensive use of cord blood progenitors for clinical applications, there is a demand for a safe and efficient expansion protocol that is able to overcome the limitations of the cord blood as a source of HSC. StemCell2MAXTM developed a technology that enhances the survival, proliferation and transplantation efficiency of HSC, leading the way to a more widespread use of HSC for research and clinical purposes. StemCell2MAXTM MIX is a solution that improves HSC expansion up to 20x, while preserving stemness, when compared to state-of-the-art. In a recent study by a leading cord blood bank, StemCell2MAX MIX was shown to support a selective 100-fold expansion of CD34+ Hematopoietic Stem and Progenitor Cells (when compared to a 10-fold expansion of Total Nucleated Cells), while maintaining their multipotent differentiative potential as assessed by CFU assays. The technology developed by StemCell2MAXTM opens new horizons for the usage of expanded hematopoietic progenitors for both research purposes (including quality and functional assays in Cord Blood Banks) and clinical applications.Keywords: cord blood, expansion, hematopoietic stem cell, transplantation
Procedia PDF Downloads 2672815 The Development Stages of Transformation of Water Policy Management in Victoria
Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western
Abstract:
The status quo of social-ecological systems is the results of not only natural processes but also the accumulated consequence of policies applied in the past. Often water management objectives are challenging and are only achieved to a limited degree on the ground. In choosing water management approaches, it is important to account for current conditions and important differences due to varied histories. Since the mid-nineteenth century, Victorian water management has evolved through a series of policy regime shifts. The main goal of this research to explore and identify the stages of the evolution of the water policy instruments as practiced in Victoria from 1890-2016. This comparative historical analysis has identified four stages in Victorian policy instrument development. In the first stage, the creation of policy instruments aimed to match the demand and supply of the resource (reserve condition). The second stage begins after natural system alone failed to balance supply and demand. The focus of the policy instrument shifted to an authority perspective in this stage. Later, the increasing number of actors interested in water led to another change in policy instrument. The third stage focused on the significant role of information from different relevant actors. The fourth and current stage is the most advanced, in that it involved the creation of a policy instrument for synergizing the previous three focal factors: reserve, authority, and information. When considering policy in other jurisdiction, these findings suggest that a key priority should be to reflect on the jurisdictions current position among these four evolutionary stages and try to make improve progressively rather than directly adopting approaches from elsewhere without understanding the current position.Keywords: policy instrument, policy transformation, socio-ecolgical system, water management
Procedia PDF Downloads 1452814 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference
Authors: Jang kyun Cho, Jeong-dong Lee
Abstract:
The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.Keywords: innovation diffusion, agent based model, small-world network, demand forecasting
Procedia PDF Downloads 3412813 Effectiveness of Weather Index Insurance for Smallholders in Ethiopia
Authors: Federica Di Marcantonio, Antoine Leblois, Wolfgang Göbel, Hervè Kerdiles
Abstract:
Weather-related shocks can threaten the ability of farmers to maintain their agricultural output and food security levels. Informal coping mechanisms (i.e. migration or community risk sharing) have always played a significant role in mitigating the negative effects of weather-related shocks in Ethiopia, but they have been found to be an incomplete strategy, particularly as a response to covariate shocks. Particularly, as an alternative to the traditional risk pooling products, an innovative form of insurance known as Index-based Insurance has received a lot of attention from researchers and international organizations, leading to an increased number of pilot initiatives in many countries. Despite the potential benefit of the product in protecting the livelihoods of farmers and pastoralists against climate shocks, to date there has been an unexpectedly low uptake. Using information from current pilot projects on index-based insurance in Ethiopia, this paper discusses the determinants of uptake that have so far undermined the scaling-up of the products, by focusing in particular on weather data availability, price affordability and willingness to pay. We found that, aside from data constraint issues, high price elasticity and low willingness to pay represent impediments to the development of the market. These results, bring us to rethink the role of index insurance as products for enhancing smallholders’ response to covariate shocks, and particularly for improving their food security.Keywords: index-based insurance, willingness to pay, satellite information, Ethiopia
Procedia PDF Downloads 4042812 The Scenario of Disaster Management in Nepal: A Case Study of Nepal Earthquakes, 2015
Authors: Sandesh Yadav
Abstract:
Earthquake constitutes one of the most terrible natural hazards which often turn into a disaster or causing extensive devastation and loss of human lives and their properties. In the year 2015, Nepal experienced the most devastating earthquakes on 25th April, 2015 and 12th May, 2015 respectively. Several villages, towns, human constructions and their properties, lives were completely damaged. The hazardous effect of Nepal earthquakes depends not only on their magnitude of Richter Scale on intensity alone, but also on so many factors, such as geology of earth crust (lithology, elasticity, soil condition, permissible stress, rock structures etc.). The unscientifically and non-seismically designed buildings resulted in huge loss of life and property. Further, the loss due to earthquake can be grouped into three broad categories namely agriculture sector (loss of livestock, poultry and food stocks), industrial sector (mainly brick production industry) and infrastructural sector (transportation infrastructure). The present research study begins with the tracing of Geological history of earthquakes in Nepal along with identification of causes of Nepal earthquakes, 2015. Secondly, research study identifies the extent of tremors of earthquakes of 2015 in Nepal and surrounding areas along with their sphere of impact. Thirdly, the research study tries to assess the agricultural loss, industrial loss and infrastructural loss due to earthquakes in Nepal. Lastly, the research study ends with the various recommendations and suggestions in order to minimize the loss due to earthquakes in the future.Keywords: earthquake, richter scale, sphere of impact, tremors
Procedia PDF Downloads 2352811 Study on the Strength and Durability Properties of Ternary Blended Concrete
Authors: Athira Babu, M. Nazeer
Abstract:
Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better.Keywords: concrete, GGBS, silica fume, ternary blend
Procedia PDF Downloads 4822810 Assessment of Water Quality Based on Physico-Chemical and Microbiological Parameters in Batllava Lake, Case Study Kosovo
Authors: Albana Kashtanjeva-Bytyçi, Idriz Vehapi, Rifat Morina, Osman Fetoshi
Abstract:
The purpose of this study is to determine the water quality in Batllava Leka through which a part of the population of the Prishtina region is supplied with drinking water. Batllava Leka is a lake built in the 70s. This lake is located in the village of Btlava in the municipality of Podujeva, with coordinates 42 ° 49′33 ″ V 21 ° 18′25 ″ L, with an area of 3.07 km2. Water supply is from the river Brvenica- Batllavë. In order to take preventive measures and improve water quality, we have conducted periodic/monthly monitoring of water quality in Lake Batllava, through microbiological and physico-chemical indicators. The monitoring was carried out during the period December 2020 - December 2021. Samples were taken at three sampling sites: at the entrance of the lake, in the middle and at the overflow, on two levels, water surface and at a depth of 30 cm. The microbiological parameters analyzed are: total coliforms, fecal coliforms, fecal streptococci, aerobic mesophilic bacteria and actinomycetes. Within the physico-chemical parameters: Dissolved Oxygen, Saturation with O2, water temperature, pH value, electrical conductivity, total soluble matter, total suspended matter, turbidity, chemical oxygen demand, biochemical oxygen demand, total organic carbon, nitrate, total hardness, hardness of calcium, calcium, magnesium, ammonium ion, chloride, sulfates, flourine, M-alkalines, bicarbonates and heavy metals, such as: Fe, Pb, Mn, Cu, Cd. The results showed that most of the physico-chemical and microbiological parameters are within the limit allowed by the WHO, except in the case of the rainiest season that exceeded some parameters.Keywords: batllava lake, monitoring of water, physico-chemical, microbiological, heavy metals
Procedia PDF Downloads 1072809 Innovative Practices That Have Significantly Scaled up Depot Medroxy Progesterone Acetate-SC Self-Inject Services
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Background The Delivering Innovations in Selfcare (DISC) project promotes universal access to quality selfcare services beginning with subcutaneous depot medroxy progesterone acetate (DMPA-SC) contraceptive self-injection (SI) option. Self-inject (SI) offers women a highly effective and convenient option that saves them frequent trips to providers. Its increased use has the potential to improve the efficiency of an overstretched healthcare system by reducing provider workloads. State Social and Behavioral Change Communications (SBCC) Officers lead project demand creation and service delivery innovations that have resulted in significant increases in SI uptake among women who opt for injectables. Strategies Service Delivery Innovations The implementation of the "Moment of Truth (MoT)" innovation helped providers overcome biases and address client fear and reluctance to self-inject. Bi-annual program audits and supportive mentoring visits helped providers retain their competence and motivation. Proper documentation, tracking, and replenishment of commodities were ensured through effective engagement with State Logistics Units. The project supported existing state monitoring and evaluation structures to effectively record and report subcutaneous depot medroxy progesterone acetate (DMPA-SC) service utilization. Demand creation Innovations SBCC Officers provide oversight, routinely evaluate performance, trains, and provides feedback for the demand creation activities implemented by community mobilizers (CMs). The scope and intensity of training given to CMs affect the outcome of their work. The project operates a demand creation model that uses a schedule to inform the conduct of interpersonal and group events. Health education sessions are specifically designed to counter misinformation, address questions and concerns, and educate target audience in an informed choice context. The project mapped facilities and their catchment areas and enlisted the support of identified influencers and gatekeepers to enlist their buy-in prior to entry. Each mobilization event began with pre-mobilization sensitization activities, particularly targeting male groups. Context-specific interventions were informed by the religious, traditional, and cultural peculiarities of target communities. Mobilizers also support clients to engage with and navigate online digital Family Planning (FP) online portals such as DiscoverYourPower website, Facebook page, digital companion (chat bot), interactive voice response (IVR), radio and television (TV) messaging. This improves compliance and provides linkages to nearby facilities. Results The project recorded 136,950 self-injection (SI) visits and a self-injection (SI) proportion rate that increased from 13 percent before the implementation of interventions in 2021 to 62 percent currently. The project cost-effectively demonstrated catalytic impact by leveraging state and partner resources, institutional platforms, and geographic scope to scale up interventions. The project also cost effectively demonstrated catalytic impact by leveraging on the state and partner resources, institutional platforms, and geographic scope to sustainably scale-up these strategies. Conclusion Using evidence-informed iterations of service delivery and demand creation models have been useful to significantly drive self-injection (SI) uptake. It will be useful to consider this implementation model during program design. Contemplation should also be given to systematic and strategic execution of strategies to optimize impact.Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, innovation, service delivery, demand creation.
Procedia PDF Downloads 752808 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper
Authors: Ahmad Naqi
Abstract:
Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).Keywords: passive control system, oil damper, seismic assessment, lumped mass model
Procedia PDF Downloads 1142807 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 1572806 Fall Prevention: Evidence-Based Intervention in Exercise Program Implementation for Keeping Older Adults Safe and Active
Authors: Jennifer Holbein, Maritza Wiedel
Abstract:
Background: Aging is associated with an increased risk of falls in older adults, and as a result, falls have become public health crises. However, the incidence of falls can be reduced through healthy aging and the implementation of a regular exercise and strengthening program. Public health and healthcare professionals authorize the use of evidence‐based, exercise‐focused fall interventions, but there are major obstacles to translating and disseminating research findings into healthcare practices. The purpose of this study was to assess the feasibility of an intervention, A Matter of Balance, in terms of demand, acceptability, and implementation into current exercise programs. Subjects: Seventy-five participants from rural communities, above the age of sixty, were randomized to an intervention or attention-control of the standardized senior fitness test. Methods: Subject completes the intervention, which combines two components: (1) motivation and (2) fall-reducing physical activities with protocols derived from baseline strength and balanced assessments. Participants (n=75) took part in the program after completing baseline functional assessments as well as evaluations of their personal knowledge, health outcomes, demand, and implementation interventions. After 8-weeks of the program, participants were invited to complete follow-up assessments with results that were compared to their baseline functional analyses. Out of all the participants in the study who complete the initial assessment, approximately 80% are expected to maintain enrollment in the implemented prescription. Furthermore, those who commit to the program should show mitigation of fall risk upon completion of their final assessment.Keywords: aging population, exercise, falls, functional assessment, healthy aging
Procedia PDF Downloads 1022805 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 4682804 Borrower Discouragement in Spain: An Empirical Analysis Using a Survey Data Set
Authors: Ginés Hernández-Cánovas, Mª Camino Ramón-Llorens, Johanna Koëter-Kant
Abstract:
This paper uses a survey data-set of 837 Spanish SMEs to analyze the association between borrower discouragement and prior firm´s strategic decisions, while controlling for firm and owner characteristics. While existing literature has neglected factors limiting the demand for resources by an overreliance on arguments which attempt to explain the existence of discouraged borrowers solely in terms of lack of access to supply of credit. The objective of this paper is to show that factors limiting the demand for resources and, therefore, reducing the availability of funds, can be traced back to the firm manager´s decision. Our hypothesis is that managers that undertake strategic decisions seeking growth or improvement in their business performance participate more in the banking market than those showing contentment with their current business situation. Our results shows that SMEs that undertake an active role in research and development activities and that achieve improvements in the operating performance of their business are less likely to be discouraged from applying for a loan. Who needs credit and who applies for credit is important for firms, prospective lenders and policymakers interested in the financial health of these firms. Credit constrained firms are less likely to invest in R&D and to introduce new products, possibly harming long-term economic growth. Knowing how important borrower discouragement is in Europe, is important for judging the priority which should be attached to government policies aimed at reducing its effects. For example, policy makers could encourage the transparency about credit eligibility and conditions in order to reduce discouragement.Keywords: discouragement, financial constraints, SMEs financing
Procedia PDF Downloads 3562803 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs
Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali
Abstract:
This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2-5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (b/b), and storage duration (0 and 7 days) with three replications respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder
Procedia PDF Downloads 3372802 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method
Procedia PDF Downloads 3082801 Management of Cultural Heritage: Bologna Gates
Authors: Alfonso Ippolito, Cristiana Bartolomei
Abstract:
A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.Keywords: cultural heritage, databases, non-contact survey, 2D-3D models
Procedia PDF Downloads 4232800 ADP Approach to Evaluate the Blood Supply Network of Ontario
Authors: Usama Abdulwahab, Mohammed Wahab
Abstract:
This paper presents the application of uncapacitated facility location problems (UFLP) and 1-median problems to support decision making in blood supply chain networks. A plethora of factors make blood supply-chain networks a complex, yet vital problem for the regional blood bank. These factors are rapidly increasing demand; criticality of the product; strict storage and handling requirements; and the vastness of the theater of operations. As in the UFLP, facilities can be opened at any of $m$ predefined locations with given fixed costs. Clients have to be allocated to the open facilities. In classical location models, the allocation cost is the distance between a client and an open facility. In this model, the costs are the allocation cost, transportation costs, and inventory costs. In order to address this problem the median algorithm is used to analyze inventory, evaluate supply chain status, monitor performance metrics at different levels of granularity, and detect potential problems and opportunities for improvement. The Euclidean distance data for some Ontario cities (demand nodes) are used to test the developed algorithm. Sitation software, lagrangian relaxation algorithm, and branch and bound heuristics are used to solve this model. Computational experiments confirm the efficiency of the proposed approach. Compared to the existing modeling and solution methods, the median algorithm approach not only provides a more general modeling framework but also leads to efficient solution times in general.Keywords: approximate dynamic programming, facility location, perishable product, inventory model, blood platelet, P-median problem
Procedia PDF Downloads 5062799 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation
Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras
Abstract:
The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation
Procedia PDF Downloads 1502798 Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves
Authors: Misagh Ghobadi, Rich Crane, Karen Hudson-Edwards, Clemens Vinzenz Ullmann
Abstract:
Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process.Keywords: adsorption, critical minerals, DLE, geothermal brines, geochemistry, lithium, lithium-ion sieves
Procedia PDF Downloads 462797 Globalisation and the Resulting Labour Exploitation in Business Operations and Supply Chains
Authors: Akilah A. Jardine
Abstract:
The integration and expansion of the global economy have indeed brought about a number of positive changes such as access to new goods and services and the opportunity for individuals and businesses to migrate, communicate, and work globally. Nevertheless, the interconnectedness of world economies is not without its negative and shameful side effects. The subsequent overabundance of goods and services has resulted in heightened competition among firms and their supply chains, fuelling the exploitation of impoverished and vulnerable individuals who are unable to equally salvage from the benefits of the integrated economy. To maintain their position in a highly competitive arena, the operations of many businesses have adopted unethical and unscrupulous practices to maximise profit, often targeting the most marginalised members of society. Simultaneously, in a consumerist obsessed society preoccupied with the consumption and accumulation of material wealth, the demand for goods and services greatly contributes to the pressure on firms, thus bolstering the exploitation of labour. This paper aims to examine the impact of business operations on the practice of labour exploitation. It explores corrupt business practices that firms adopt and key labour exploitative conditions outlined by the International Labour Organization, particularly, paying workers low wages, forcing individuals to work in abusive and unsafe conditions, and considers the issue regarding individuals’ consent to exploitative environments. Further, it considers the role of consumers in creating the high demand for goods and services, which in turn fosters the exploitation of labour. This paper illustrates that the practice of labour exploitation in the economy is a by-product of both global competitive business operations and heightened consumer consumption.Keywords: globalisation, labour exploitation, modern slavery, sweatshops, unethical business practices
Procedia PDF Downloads 1432796 Climate Change Adaptation in Agriculture: A General Equilibrium Analysis of Land Re-Allocation in Nepal
Authors: Sudarshan Chalise, Athula Naranpanawa
Abstract:
This paper attempts to investigate the viability of cropland re-allocation as an adaptation strategy to minimise the economy-wide costs of climate change on agriculture. Nepal makes an interesting case study as it is one of the most vulnerable agricultural economies within South Asia. This paper develops a comparative static multi-household Computable General Equilibrium (CGE) model for Nepal with a nested set of Constant Elasticity of Transformation (CET) functional forms to model the allocation of land within different agricultural sectors. Land transformation elasticities in these CET functions are allowed to reflect the ease of switching from one crop to another based on their agronomic characteristics. The results suggest that, in the long run, farmers in Nepal tend to allocate land to crops that are comparatively less impacted by climate change, such as paddy, thereby minimizing the economy-wide impacts of climate change. Furthermore, the results reveal that land re-allocation tends to reduce the income disparity among different household groups by significantly moderating the income losses of rural marginal farmers. Therefore, it is suggested that policy makers in Nepal should prioritise schemes such as providing climate-smart paddy varieties (i.e., those that are resistant to heat, drought and floods) to farmers, subsidising fertilizers, improving agronomic practices, and educating farmers to switch from crops that are highly impacted by climate change to those that are not, such as paddy.Keywords: climate change, general equilibrium, land re-allocation, nepalese agriculture
Procedia PDF Downloads 3312795 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 1282794 Flexural Strengthening of Steel Beams Using Fiber Reinforced Polymers
Authors: Sally Hosny, Mona G. Ibrahim, N. K. Hassan
Abstract:
Fiber reinforced polymers (FRP) is one of the most environmentally method for strengthening and retrofitting steel structure buildings. The behaviour of flexural strengthened steel I-beams using FRP was investigated. The finite element (FE) models were developed using ANSYS® as verification cases to simulate the experimental behaviour of using FRP strips to flexure strengthen steel I-beam. Two experimental studies were selected for verification; first examined the effect of different thicknesses and modulus of elasticity while the second studied the effect of applying different carbon fiber reinforced polymers (CFRP) bond lengths. The proposed FE models were in good agreement with the experimental results in terms of failure modes, load bearing capacities and strain distribution on CFRP strips. The verified FE models can be utilized to conduct a parametric study where various widths (40, 50, 60, 70 and 80 mm), thickness (1.2, 2 and 4 mm) and lengths (1500, 1700 and 1800 mm) of CFRP were analyzed. The results presented clearly revealed that the load bearing capacity was significantly increased (+7%) when the width and thickness were increased. However, load bearing capacity was slightly affected using longer CFRP strips. Moreover, applying another glass fiber reinforced polymers (GFRP) of 1500 mm in length, 50 mm in width and thicknesses of 1.2, 2 and 4 mm were investigated. Load bearing capacity of strengthened I-beams using GFRP is less than CFRP by average 8%. Statistical analysis has been conducted using Minitab®.Keywords: FRP, strengthened steel I-beams, flexural, FEM, ANSYS
Procedia PDF Downloads 2792793 Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology
Authors: Lalnuntluanga Hmar, Hardik Vyas
Abstract:
Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent.Keywords: borate, crosslinker, Guar, Hydroxypropyl Guar (HPG), rheology
Procedia PDF Downloads 2022792 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength
Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain
Abstract:
Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.Keywords: surface morphology, processed films, polyvinyl alcohol, templated polyanilines, tensile testing
Procedia PDF Downloads 2142791 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent
Authors: Samira Rostom, Robert Symonds, Robin W. Hughes
Abstract:
Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.Keywords: MOF, H2 purification, high T, PSA
Procedia PDF Downloads 1012790 Effect of Hypertension Exercise and Slow Deep Breathing Combination to Blood Pressure: A Mini Research in Elderly Community
Authors: Prima Khairunisa, Febriana Tri Kusumawati, Endah Luthfiana
Abstract:
Background: Hypertension in elderly, caused by cardiovascular system cannot work normally, because the valves thickened and inelastic blood vessels. It causes vasoconstriction of the blood vessels. Hypertension exercise, increase cardiovascular function and the elasticity of the blood vessels. While slow deep breathing helps the body and mind feel relax. Combination both of them will decrease the blood pressure. Objective: To know the effect of hypertension exercise and slow deep breathing combination to blood pressure in elderly. Method: The study conducted with one group pre-post test experimental design. The samples were 10 elderly both male and female in a Village in Semarang, Central Java, Indonesia. The tool was manual sphygmomanometer to measure blood pressure. Result: Based on paired t-test between hypertension exercise and slow deep breathing with systole blood pressure showed sig (2-tailed) was 0.045, while paired t-test between hypertension exercise hypertension exercise and slow deep breathing with diastole blood pressure showed sig (2-tailed) was 0,343. The changes of systole blood pressure were 127.5 mmHg, and diastole blood pressure was 80 mmHg. Systole blood pressure decreases significantly because the average of systole blood pressure before implementation was 135-160 mmHg. While diastole blood pressure was not decreased significantly. It was influenced by the average of diastole blood pressure before implementation of hypertension exercise was not too high. It was between 80- 90 mmHg. Conclusion: There was an effect of hypertension exercise and slow deep breathing combination to the blood pressure in elderly after 6 times implementations.Keywords: hypertension exercise, slow deep breathing, elderly, blood pressure
Procedia PDF Downloads 339