Search results for: data loss
27041 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 14527040 Big Brain: A Single Database System for a Federated Data Warehouse Architecture
Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf
Abstract:
Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)
Procedia PDF Downloads 24127039 Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN
Authors: Sethu Lekshmi, Shahanas, Prettha P.
Abstract:
All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds.Keywords: 802.11, WLAN, capture effect, collision detection, collision resolution, receiver initiated
Procedia PDF Downloads 36427038 Machine Learning Based Smart Beehive Monitoring System Without Internet
Authors: Esra Ece Var
Abstract:
Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture
Procedia PDF Downloads 24627037 A Review Paper on Data Mining and Genetic Algorithm
Authors: Sikander Singh Cheema, Jasmeen Kaur
Abstract:
In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining
Procedia PDF Downloads 59627036 Analysis of the Relationship between the Old Days Hospitalized with Economic Lost Top Ten Age Productive Disease in Hospital Inpatient Inche Abdul Moeis Samarinda, Indonesia
Authors: Tri Murti Tugiman, Awalyya Fasha
Abstract:
This research aims to analyze the magnitude of the economic losses incurred as a result of a person suffering from a particular disease of the ten highest in the productive age diseases in Hospitals Inche Abdul Moeis Samarinda. This research was a descriptive survey research and a secondary data analysis. For the analysis of economic losses populations used are all in patients who suffer from the 10 highest diseases in the productive age in hospitals IA Moeis Samarinda in 2011. Sampling was performed by using a stratified random sampling with samples of 77 people. Research results indicate that the direct cost community incurred to obtain medical services in hospitals IA Moeis is IDR 74437520. The amount of indirect costs incurred during service in a community hospital is IDR 10562000. The amount lost due to sickness fee is IDR 5377800. The amount of economic lost people to obtain medical services in hospitals IA Moeis is IDR 90377320. The number of days of hospitalization was as much as 171 respondents throughout the day. This study suggests the economic loss could be prevented by changes in the lifestyle of the people who clean and healthy along with the following insurance.Keywords: hospitalized, economic lost, productive age diseases, secondary data analysis
Procedia PDF Downloads 48327035 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring
Authors: Seung-Lock Seo
Abstract:
This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.Keywords: data mining, process data, monitoring, safety, industrial processes
Procedia PDF Downloads 40727034 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS
Procedia PDF Downloads 20027033 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi
Abstract:
Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.Keywords: RFID, asset tracking system, MongoDB, NoSQL
Procedia PDF Downloads 30827032 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.Keywords: deep-fried dough stick, palm oil, sunflower oil, rice bran oil
Procedia PDF Downloads 28327031 Mechanical Behavior of a Pipe Subject to Buckling
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study, we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: finite element analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 22027030 Buckling a Reservoir Composite Provided with Notches
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 36127029 Mechanism of Sinkhole Development on Water-Bearing Soft Ground Tunneling
Authors: H. J. Kim, K. H. Kim, N. H. Park, K. T. Nam, Y. H. Jung, T. H. Kim, J. H. Shin
Abstract:
Underground excavations in an urban area can cause various geotechnical problems such as ground loss and lowering of groundwater level. When the ground loss becomes uncontrollably large, sinkholes can be developed to the ground surface. A sinkhole is commonly known as the natural phenomenon associated with lime rock areas. However, sinkholes in urban areas due to pressurized sewers and/or tunneling are also frequently reported. In this study, mechanism of a sinkhole developed at the site ‘A’ where a tunneling work underwent is investigated. The sinkhole occurred in the sand strata with the high level of groundwater when excavating a tunnel of which diameter is 3.6 m. The sinkhole was progressed in two steps. The first step began with the local failure around the tunnel face followed by tons of groundwater inflow, and the second step was triggered by the TBM (Tunnel Boring Machine) chamber opening which led to the progressive general failure. The possibility of the sinkhole was evaluated by using Limit Equilibrium Method (LEM), and critical height was evaluated by the empirical stability chart. It is found that the lowering of the face pressure and inflow of groundwater into the tunnel face turned to be the main reason for the sinkhole.Keywords: limit equilibrium method, sinkhole, stability chart, tunneling
Procedia PDF Downloads 25627028 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 15227027 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: biological ontology, linked data, semantic data integration, semantic web
Procedia PDF Downloads 45327026 Slope Instability Study Using Kinematic Analysis and Lineament Density Mapping along a Part of National Highway 58, Uttarakhand, India
Authors: Kush Kumar, Varun Joshi
Abstract:
Slope instability is a major problem of the mountainous region, especially in parts of the Indian Himalayan Region (IHR). The on-going tectonic, rugged topography, steep slope, heavy precipitation, toe erosion, structural discontinuities, and deformation are the main triggering factors of landslides in this region. Besides the loss of life, property, and infrastructure caused by a landslide, it also results in various environmental problems, i.e., degradation of slopes, land use, river quality by increased sediments, and loss of well-established vegetation. The Indian state of Uttarakhand, being a part of the active Himalayas, also faces numerous cases of slope instability. Therefore, the vulnerable landslide zones need to be delineated to safeguard various losses. The study area is focused in Garhwal and Tehri -Garhwal district of Uttarakhand state along National Highway 58, which is a strategic road and also connects the four important sacred pilgrims (Char Dham) of India. The lithology of these areas mainly comprises of sandstone, quartzite of Chakrata formation, and phyllites of Chandpur formation. The greywacke and sandstone rock of Saknidhar formation dips northerly and is overlain by phyllite of Chandpur formation. The present research incorporates the lineament density mapping using remote sensing satellite data supplemented by a detailed field study via kinematic analysis. The DEM data of ALOS PALSAR (12.5 m resolution) is resampled to 10 m resolution and used for preparing various thematic maps such as slope, aspect, drainage, hill shade, lineament, and lineament density using ARCGIS 10.6 software. Furthermore, detailed field mapping, including structural mapping, geomorphological mapping, is integrated for kinematic analysis of the slope using Dips 6.0 software of Rockscience. The kinematic analysis of 40 locations was carried out, among which 15 show the planar type of failure, five-show wedge failure, and rest, 20 show no failures. The lineament density map is overlapped with the location of the unstable slope inferred from kinematic analysis to infer the association of the field information and remote sensing derived information, and significant compatibility was observed. With the help of the present study, location-specific mitigation measures could be suggested. The mitigation measures would be helping in minimizing the probability of slope instability, especially during the rainy season, and reducing the hampering of road traffic.Keywords: Indian Himalayan Region, kinematic analysis, lineament density mapping, slope instability
Procedia PDF Downloads 14427025 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application
Authors: Miroslav Čulík, Petr Gurný
Abstract:
This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility
Procedia PDF Downloads 55227024 Optimal Allocation of Multiple Emergency Resources for a Single Potential Accident Node: A Mixed Integer Linear Program
Authors: Yongjian Du, Jinhua Sun, Kim M. Liew, Huahua Xiao
Abstract:
Optimal allocation of emergency resources before a disaster is of great importance for emergency response. In reality, the pre-protection for a single critical node where accidents may occur is common. In this study, a model is developed to determine location and inventory decisions of multiple emergency resources among a set of candidate stations to minimize the total cost based on the constraints of budgetary and capacity. The total cost includes the economic accident loss which is accorded with probability distribution of time and the warehousing cost of resources which is increasing over time. A ratio is set to measure the degree of a storage station only serving the target node that becomes larger with the decrease of the distance between them. For the application of linear program, it is assumed that the length of travel time to the accident scene of emergency resources has a linear relationship with the economic accident loss. A computational experiment is conducted to illustrate how the proposed model works, and the results indicate its effectiveness and practicability.Keywords: emergency response, integer linear program, multiple emergency resources, pre-allocation decisions, single potential accident node
Procedia PDF Downloads 15727023 Exergy Analyses of Wind Turbine
Authors: Muhammad Abid
Abstract:
Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.Keywords: exergy, efficiency, performance evaluation, wind energy
Procedia PDF Downloads 37327022 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 13527021 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 17327020 Comparison of hCG and GnRH in Enhancing Pregnancy Rate of Non-Lactating Cycling Brood Mares
Authors: Sanan Raza, Muhammad Younus, Ahmad Yar Qamar, Tariq Abbas, Hamayun Khan, Amanullah Khan
Abstract:
Mares are considered to be seasonally polyestrous animals. The breeding season of mare ranges from March to May in Pakistan. However, fertility problems of mares have been trifling the horse breeders and stud owners since long, and it comes out that the fertility status of mares in Pakistan is relatively lower than the world average. The aim of the present study was to compare the effect of hCG and GnRH in improving pregnancy rate of mares in a transition period of month March and April. A total of n=66 mares showing normal estrus cycles with age ranging 5-12 y, weighing between 400-600 kg, BCS 6 ± 0.5 (1-9) and lactation varied from first to 5th were included in the experiment. These mares were administered PGF2α (75 μg; Dalmazine®, Fatro, Italy; 1 ml; i.m.) and divided into 3 groups. Mares of group 1 (n=22) were administered GnRH (100 μg; Dalmarelin®, Fatro, Italy; 4ml; im) while group 2 (n=22) mares were given hCG (5000 IU; IVF-C, LG Pharma; 1ml; iv). Likewise, mares of group 3 (n=22) were injected normal saline. Each treatment was given, when follicle attained the size of 35mm, keeping in view, the maturity of ovulating follicle at 35mm size and response to each treatment after routine ultrasound examination. All the mares of three groups were bred at 12 and 36 hours of treatment when the follicle reached the size of 35mm measured by ultrasound examination. Pregnancy was diagnosed by ultrasonography on day 18th and 42nd mating. On day 18th, pregnancy rate was 81.8% for hCG followed by 54.5% for GnRH and 45.5% for control. On day 42nd, pregnancy rate was (47.4%) for hCG which is significantly high (p<0.05) followed by GnRH (31.6%) and control (21.1%). Additionally the pregnancy loss was (25%, 20% respectively) in control and GnRH treated groups; whereas, hCG treated group showed no pregnancy loss (0.00%). Since no embryonic loss has been observed with hCG treatment during current study. Also hCG treated mares were 7.87 times more likely to conceive than controls. There were two times more chances of pregnancy in hCG treated mares than GnRH treated mares Therefore, it is concluded that the use of hCG in breeding season can improve pregnancy rate at a significant level when compared with GnRH hormone.Keywords: mares, ovulation, hCG, pregnancy rate
Procedia PDF Downloads 62427019 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 8727018 Self-Stigmatization of Deaf and Hard-of-Hearing Students
Authors: Nadezhda F. Mikahailova, Margarita E. Fattakhova, Mirgarita A. Mironova, Ekaterina V. Vyacheslavova, Vladimir A. Mikahailov
Abstract:
Stigma is a significant obstacle to the successful adaptation of deaf students to the conditions of an educational institution, especially for those who study in inclusion. The aim of the study was to identify the spheres of life which are the most significant for developing of the stigma of deaf students; to assess the influence of factors associated with deafness on the degree of their self-stigmatization (time and degree of hearing loss, type of education - inclusion / differentiation) and to find out who is more prone to stigma - which characteristics of personality, identity, mental health and coping are specific for those deaf who demonstrates stigmatizing attitudes. The study involved 154 deaf and hard-of-hearing students (85 male and 69 female) aged from 18 to 45 years - 28 students of the Herzen State Pedagogical University (St. Petersburg), who study in inclusion, 108 students of the National Research Technological University and 18 students of the Aviation Technical College (Kazan) - students in groups with a sign language interpreter. We used the following methods: modified questionnaire 'Self-assessment and coping strategies' (Jambor & Elliot, 2005), Scale of self-esteem (Rosenberg et al, 1995), 'Big-Five' (Costa&McCrae, 1997), TRF (Becker, 1989), WCQ (Lazarus & Folkman, 1988), self-stigma scale (Mikhailov, 2008). The severity of self-stigmatization of deaf and hard of hearing students was determined by the degree of deafness and the time they live with hearing loss, learning conditions, the type of self-identification (acculturation), personality traits, and the specifics of coping behavior. Persons with congenital hearing loss more often noted a benevolent and sympathetic attitude towards them on the part of the hearers and less often, due to deafness, limited themselves to visiting public places than late deaf people, which indicates 'get rid of' the experience of their defect and normalization of the state. Students studying in conditions of inclusion more often noted the dismissive attitude of society towards deaf people. Individuals with mild to moderate hearing loss were more likely to fear marriage and childbearing because of their deafness than students with profound hearing loss. Those who considered themselves disabled (49% of all respondents) were more inclined to cope with seeking social support and less used 'distancing' coping. Those who believed that their quality of life and social opportunities were most influenced by the attitude of society towards the deaf (39%) were distinguished by a less pronounced sense of self-worth, a desire for autonomy, and frequent usage of 'avoidance' coping strategies. 36.4% of the respondents noted that there have been situations in their lives when people learned that they are deaf, began to treat them worse. These respondents had predominantly deaf acculturation, but more often, they used 'bicultural skills,' specific coping for the deaf, and had a lower level of extraversion and emotional stability. 31.2% of the respondents tried to hide from others that they have hearing problems. They considered themselves to be in a culture of hearing, used coping strategies 'bicultural skills,' and had lower levels of extraversion, cooperation, and emotional stability. Acknowledgment: Supported by the RFBR № 19-013-0040Keywords: acculturation, coping, deafness, stigmatization
Procedia PDF Downloads 23827017 Role of Bariatric Surgery in Polycystic Ovarian Syndrome &Infertility
Authors: Ahuja Ashish, Nain Prabhdeep Singh
Abstract:
Introduction: Polycystic ovarian syndrome(PCOS) is the most common endocrine disorder among women of reproductive age.Pcos encompasses a broad spectrum of signs&symptoms of ovary dysfunction,obesity,blood pressure,insulin resistance & infertility. Bariatric Surgery can be an effective means of weight loss in Pcos & curing infertility. Materials and Methods: 15 female patients were enrolled in the study from 2012-2014.66%(n=10) were in age group of 20-25 years,33%(n=5) were in age group of 25-33 years who underwent. Bariatric surgery in form of Laproscopic sleeve Gastrectomy(LSG)& Roux-en-Y gastric bypass. LSG 73%(n=11), RYGB26% (n=4). Results: There was a significant improvement in obesity (60% excess weight loss)over 1 year after bariatric surgery, in 12 patients there was gross improvement in restoration of menstrual cycle who had irregular menstrual cycle. In 80% patients the serum insulin level showed normal value. Over two years 8 patients become pregnant. Conclusions: 1)Obese women with Pcos maybe able to conceive after Bariatric Surgery. 2) Women with Pcos should only consider bariatric surgery if they were already considering it for other reasons to treat obesity, blood pressure & other co-morbid conditions.Keywords: obesity, bariatric surgery, polycystic ovarian syndrome, infertility
Procedia PDF Downloads 29527016 Enhanced Visual Sharing Method for Medical Image Security
Authors: Kalaivani Pachiappan, Sabari Annaji, Nithya Jayakumar
Abstract:
In recent years, Information security has emerged as foremost challenges in many fields. Especially in medical information systems security is a major issue, in handling reports such as patients’ diagnosis and medical images. These sensitive data require confidentiality for transmission purposes. Image sharing is a secure and fault-tolerant method for protecting digital images, which can use the cryptography techniques to reduce the information loss. In this paper, visual sharing method is proposed which embeds the patient’s details into a medical image. Then the medical image can be divided into numerous shared images and protected by various users. The original patient details and medical image can be retrieved by gathering the shared images.Keywords: information security, medical images, cryptography, visual sharing
Procedia PDF Downloads 42027015 Liposome Sterile Filtration Fouling: The Impact of Transmembrane Pressure on Performance
Authors: Hercules Argyropoulos, Thomas F. Johnson, Nigel B Jackson, Kalliopi Zourna, Daniel G. Bracewell
Abstract:
Lipid encapsulation has become essential in drug delivery, notably for mRNA vaccines during the COVID-19 pandemic. However, their sterile filtration poses challenges due to the risk of deformation, filter fouling and product loss from adsorption onto the membrane. Choosing the right filtration membrane is crucial to maintain sterility and integrity while minimizing product loss. The objective of this study is to develop a rigorous analytical framework utilizing confocal microscopy and filtration blocking models to elucidate the fouling mechanisms of liposomes as a model system for this class of delivery vehicle during sterile filtration, particularly in response to variations in transmembrane pressure (TMP) during the filtration process. Experiments were conducted using fluorescent Lipoid S100 PC liposomes formulated by micro fluidization and characterized by Multi-Angle Dynamic Light Scattering. Dual-layer PES/PES and PES/PVDF membranes with 0.2 μm pores were used for filtration under constant pressure, cycling from 30 psi to 5 psi and back to 30 psi, with 5, 6, and 5-minute intervals. Cross-sectional membrane samples were prepared by microtome slicing and analyzed with confocal microscopy. Liposome characterization revealed a particle size range of 100-140 nm and an average concentration of 2.93x10¹¹ particles/mL. Goodness-of-fit analysis of flux decline data at varying TMPs identified the intermediate blocking model as most accurate at 30 psi and the cake filtration model at 5 psi. Membrane resistance analysis showed atypical behavior compared to therapeutic proteins, with resistance remaining below 1.38×10¹¹ m⁻¹ at 30 psi, increasing over fourfold at 5 psi, and then decreasing to 1-1.3-fold when pressure was returned to 30 psi. This suggests that increased flow/shear deforms liposomes enabling them to more effectively navigate membrane pores. Confocal microscopy indicated that liposome fouling mainly occurred in the upper parts of the dual-layer membrane.Keywords: sterile filtration, membrane resistance, microfluidization, confocal microscopy, liposomes, filtration blocking models
Procedia PDF Downloads 2627014 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name
Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing
Abstract:
Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.Keywords: NDN, order-preserving encryption, fuzzy search, privacy
Procedia PDF Downloads 49127013 Low Field Microwave Absorption and Magnetic Anisotropy in TM Co-Doped ZnO System
Authors: J. Das, T. S. Mahule, V. V. Srinivasu
Abstract:
Electron spin resonance (ESR) study at 9.45 GHz and a field modulation frequency of 100Hz was performed on bulk polycrystalline samples of Mn:TM (Fe/Ni) and Mn:RE (Gd/Sm) co doped ZnO samples with composition Zn1-xMn:TM/RE)xO synthesised by solid state reaction route and sintered at 500 0C temperature. The room temperature microwave absorption data collected by sweeping the DC magnetic field from -500 to 9500 G for the Mn:Fe and Mn:Ni co doped ZnO samples exhibit a rarely reported non resonant low field absorption (NRLFA) in addition to a strong absorption at around 3350G, usually associated with ferromagnetic resonance (FMR) satisfying Larmor’s relation due to absorption in the full saturation state. Observed low field absorption is distinct to ferromagnetic resonance even at low temperature and shows hysteresis. Interestingly, it shows a phase opposite with respect to the main ESR signal of the samples, which indicates that the low field absorption has a minimum value at zero magnetic field whereas the ESR signal has a maximum value. The major resonance peak as well as the peak corresponding to low field absorption exhibit asymmetric nature indicating magnetic anisotropy in the sample normally associated with intrinsic ferromagnetism. Anisotropy parameter for Mn:Ni codoped ZnO sample is noticed to be quite higher. The g values also support the presence of oxygen vacancies and clusters in the samples. These samples have shown room temperature ferromagnetism in the SQUID measurement. However, in rare earth (RE) co doped samples (Zn1-x (Mn: Gd/Sm)xO), which show paramagnetic behavior at room temperature, the low field microwave signals are not observed. As microwave currents due to itinerary electrons can lead to ohmic losses inside the sample, we speculate that more delocalized 3d electrons contributed from the TM dopants facilitate such microwave currents leading to the loss and hence absorption at the low field which is also supported by the increase in current with increased micro wave power. Besides, since Fe and Ni has intrinsic spin polarization with polarisability of around 45%, doping of Fe and Ni is expected to enhance the spin polarization related effect in ZnO. We emphasize that in this case Fe and Ni doping contribute to polarized current which interacts with the magnetization (spin) vector and get scattered giving rise to the absorption loss.Keywords: co-doping, electron spin resonance, hysteresis, non-resonant microwave absorption
Procedia PDF Downloads 31727012 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 121