Search results for: crack detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3871

Search results for: crack detection

3091 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools

Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha

Abstract:

The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.

Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase

Procedia PDF Downloads 142
3090 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 16
3089 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 22
3088 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer

Authors: Maomao Cao

Abstract:

Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.

Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance

Procedia PDF Downloads 151
3087 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass

Authors: Martin Botz, Michael Kraus, Geralt Siebert

Abstract:

The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.

Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity

Procedia PDF Downloads 122
3086 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: fault detection, ground robot, inverse simulation, rover

Procedia PDF Downloads 308
3085 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements

Authors: Mohammad R. Bhuyan, Mohammad J. Khattak

Abstract:

Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.

Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement

Procedia PDF Downloads 166
3084 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 154
3083 Detection of Helicobacter Pylori by PCR and ELISA Methods in Patients with Hyperlipidemia

Authors: Simin Khodabakhshi, Hossein Rassi

Abstract:

Hyperlipidemia refers to any of several acquired or genetic disorders that result in a high level of lipids circulating in the blood. Helicobacter pylori infection is a contributing factor in the progression of hyperlipidemia with serum lipid changes. The aim of this study was to detect of Helicobacter pylori by PCR and serological methods in patients with hyperlipidemia. In this case-control study, 174 patients with hyperlipidemia and 174 healthy controls were studied. Also, demographics, physical and biochemical parameters were performed in all samples. The DNA extracted from blood specimens was amplified by H pylori cagA specific primers. The results show that H. pylori cagA positivity was detected in 79% of the hyperlipidemia and in 56% of the control group by ELISA test and 49% of the hyperlipidemia and in 24% of the control group by PCR test. Prevalence of H. pylori infection was significantly higher in hyperlipidemia as compared to controls. In addition, patients with hyperlipidemia had significantly higher values for triglyceride, total cholesterol, LDL-C, waist to hip ratio, body mass index, diastolic and systolic blood pressure and lower levels of HDL-C than control participants (all p < 0.0001). Our result detected the ELISA was a rapid and cost-effective detection and considering the high prevalence of cytotoxigenic H. pylori strains, cag A is suggested as a promising target for PCR and ELISA tests for detection of infection with toxigenic strains. In general, it can be concluded that molecular analysis of H. pylori cagA and clinical parameters are important in early detection of hyperlipidemia and atherosclerosis with H. pylori infection by PCR and ELISA tests.

Keywords: Helicobacter pylori, hyperlipidemia, PCR, ELISA

Procedia PDF Downloads 199
3082 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array

Procedia PDF Downloads 385
3081 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 125
3080 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 114
3079 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 146
3078 Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein

Authors: Sofia G. Meirinho, Luis G. Dias, António M. Peres, Lígia R. Rodrigues

Abstract:

The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring.

Keywords: osteopontin, aptamer, aptasensor, screen-printed electrode, cyclic voltammetry

Procedia PDF Downloads 431
3077 Realistic Testing Procedure of Power Swing Blocking Function in Distance Relay

Authors: Farzad Razavi, Behrooz Taheri, Mohammad Parpaei, Mehdi Mohammadi Ghalesefidi, Siamak Zarei

Abstract:

As one of the major problems in protecting large-dimension power systems, power swing and its effect on distance have caused a lot of damages to energy transfer systems in many parts of the world. Therefore, power swing has gained attentions of many researchers, which has led to invention of different methods for power swing detection. Power swing detection algorithm is highly important in distance relay, but protection relays should have general requirements such as correct fault detection, response rate, and minimization of disturbances in a power system. To ensure meeting the requirements, protection relays need different tests during development, setup, maintenance, configuration, and troubleshooting steps. This paper covers power swing scheme of the modern numerical relay protection, 7sa522 to address the effect of the different fault types on the function of the power swing blocking. In this study, it was shown that the different fault types during power swing cause different time for unblocking distance relay.

Keywords: power swing, distance relay, power system protection, relay test, transient in power system

Procedia PDF Downloads 386
3076 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 78
3075 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 118
3074 Automatic Detection and Update of Region of Interest in Vehicular Traffic Surveillance Videos

Authors: Naydelis Brito Suárez, Deni Librado Torres Román, Fernando Hermosillo Reynoso

Abstract:

Automatic detection and generation of a dynamic ROI (Region of Interest) in vehicle traffic surveillance videos based on a static camera in Intelligent Transportation Systems is challenging for computer vision-based systems. The dynamic ROI, being a changing ROI, should capture any other moving object located outside of a static ROI. In this work, the video is represented by a Tensor model composed of a Background and a Foreground Tensor, which contains all moving vehicles or objects. The values of each pixel over a time interval are represented by time series, and some pixel rows were selected. This paper proposes a pixel entropy-based algorithm for automatic detection and generation of a dynamic ROI in traffic videos under the assumption of two types of theoretical pixel entropy behaviors: (1) a pixel located at the road shows a high entropy value due to disturbances in this zone by vehicle traffic, (2) a pixel located outside the road shows a relatively low entropy value. To study the statistical behavior of the selected pixels, detecting the entropy changes and consequently moving objects, Shannon, Tsallis, and Approximate entropies were employed. Although Tsallis entropy achieved very high results in real-time, Approximate entropy showed results slightly better but in greater time.

Keywords: convex hull, dynamic ROI detection, pixel entropy, time series, moving objects

Procedia PDF Downloads 74
3073 Integrated Lateral Flow Electrochemical Strip for Leptospirosis Diagnosis

Authors: Wanwisa Deenin, Abdulhadee Yakoh, Chahya Kreangkaiwal, Orawon Chailapakul, Kanitha Patarakul, Sudkate Chaiyo

Abstract:

LipL32 is an outer membrane protein present only on pathogenic Leptospira species, which are the causative agent of leptospirosis. Leptospirosis symptoms are often misdiagnosed with other febrile illnesses as the clinical manifestations are non-specific. Therefore, an accurate diagnostic tool for leptospirosis is indeed critical for proper and prompt treatment. Typical diagnosis via serological assays is generally performed to assess the antibodies produced against Leptospira. However, their delayed antibody response and complicated procedure are undoubtedly limited the practical utilization especially in primary care setting. Here, we demonstrate for the first time an early-stage detection of LipL32 by an integrated lateral-flow immunoassay with electrochemical readout (eLFIA). A ferrocene trace tag was monitored via differential pulse voltammetry operated on a smartphone-based device, thus allowing for on-field testing. Superior performance in terms of the lowest detectable limit of detection (LOD) of 8.53 pg/mL and broad linear dynamic range (5 orders of magnitude) among other sensors available thus far was established. Additionally, the developed test strip provided a straightforward yet sensitive approach for diagnosis of leptospirosis using the collected human sera from patients, in which the results were comparable to the real-time polymerase chain reaction technique.

Keywords: leptospirosis, electrochemical detection, lateral flow immunosensor, point-of-care testing, early-stage detection

Procedia PDF Downloads 93
3072 Increase in Specificity of MicroRNA Detection by RT-qPCR Assay Using a Specific Extension Sequence

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

We describe an innovative method for highly specific detection of miRNAs using a specially modified method of poly(A) adaptor RT-qPCR. We use uniquely designed specific extension sequence, which plays important role in providing an opportunity to affect high specificity of miRNA detection. This method involves two steps of reactions as like previously reported and which are poly(A) tailing and reverse-transcription followed by real-time PCR. Firstly, miRNAs are extended by a poly(A) tailing reaction and then converted into cDNA. Here, we remarkably reduced the reaction time by the application of short length of poly(T) adaptor. Next, cDNA is hybridized to the 3’-end of a specific extension sequence which contains miRNA sequence and results in producing a novel PCR template. Thereafter, the SYBR Green-based RT-qPCR progresses with a universal poly(T) adaptor forward primer and a universal reverse primer. The target miRNA, miR-106b in human brain total RNA, could be detected quantitatively in the range of seven orders of magnitude, which demonstrate that the assay displays a dynamic range of at least 7 logs. In addition, the better specificity of this novel extension-based assay against well known poly(A) tailing method for miRNA detection was confirmed by melt curve analysis of real-time PCR product, clear gel electrophoresis and sequence chromatogram images of amplified DNAs.

Keywords: microRNA(miRNA), specific extension sequence, RT-qPCR, poly(A) tailing assay, reverse transcription

Procedia PDF Downloads 308
3071 Learning Traffic Anomalies from Generative Models on Real-Time Observations

Authors: Fotis I. Giasemis, Alexandros Sopasakis

Abstract:

This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.

Keywords: traffic, anomaly detection, GNN, GAN

Procedia PDF Downloads 8
3070 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 169
3069 Application of Electronic Nose Systems in Medical and Food Industries

Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni

Abstract:

Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.

Keywords: e-nose, low cost, odor detection, food safety

Procedia PDF Downloads 141
3068 Damage Detection in Beams Using Wavelet Analysis

Authors: Goutham Kumar Dogiparti, D. R. Seshu

Abstract:

In the present study, wavelet analysis was used for locating damage in simply supported and cantilever beams. Study was carried out varying different levels and locations of damage. In numerical method, ANSYS software was used for modal analysis of damaged and undamaged beams. The mode shapes obtained from numerical analysis is processed using MATLAB wavelet toolbox to locate damage. Effect of several parameters such as (damage level, location) on the natural frequencies and mode shapes were also studied. The results indicated the potential of wavelets in identifying the damage location.

Keywords: damage, detection, beams, wavelets

Procedia PDF Downloads 365
3067 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: android, API Calls, machine learning, permissions combination

Procedia PDF Downloads 329
3066 Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria

Authors: Meltem Agar, Maisem Laabei, Hannah Leese, Pedro Estrela

Abstract:

Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water.

Keywords: aptamer, electrochemical sensor, staphylococcus aureus, molecularly imprinted polymer

Procedia PDF Downloads 118
3065 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 230
3064 Time Parameter Based for the Detection of Catastrophic Faults in Analog Circuits

Authors: Arabi Abderrazak, Bourouba Nacerdine, Ayad Mouloud, Belaout Abdeslam

Abstract:

In this paper, a new test technique of analog circuits using time mode simulation is proposed for the single catastrophic faults detection in analog circuits. This test process is performed to overcome the problem of catastrophic faults being escaped in a DC mode test applied to the inverter amplifier in previous research works. The circuit under test is a second-order low pass filter constructed around this type of amplifier but performing a function that differs from that of the previous test. The test approach performed in this work is based on two key- elements where the first one concerns the unique square pulse signal selected as an input vector test signal to stimulate the fault effect at the circuit output response. The second element is the filter response conversion to a square pulses sequence obtained from an analog comparator. This signal conversion is achieved through a fixed reference threshold voltage of this comparison circuit. The measurement of the three first response signal pulses durations is regarded as fault effect detection parameter on one hand, and as a fault signature helping to hence fully establish an analog circuit fault diagnosis on another hand. The results obtained so far are very promising since the approach has lifted up the fault coverage ratio in both modes to over 90% and has revealed the harmful side of faults that has been masked in a DC mode test.

Keywords: analog circuits, analog faults diagnosis, catastrophic faults, fault detection

Procedia PDF Downloads 442
3063 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
3062 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 305