Search results for: collision absorption
1068 Synthesis and Use of Thiourea Derivative (1-Phenyl-3- Benzoyl-2-Thiourea) for Extraction of Cadmium Ion
Authors: Abdulfattah M. Alkherraz, Zaineb I. Lusta, Ahmed E. Zubi
Abstract:
The environmental pollution by heavy metals became more problematic nowadays. To solve the problem of Cadmium accumulation in human organs which lead to dangerous effects on human health, and to determine its concentration, the organic legand 1-phenyl-3-benzoyl-2-thiourea was used to extract the cadmium ions from its solution. This legand as one of thiourea derivatives was successfully synthesized. The legand was characterized by NMR and CHN elemental analysis, and used to extract the cadmium from its solutions by formation of a stable complex at neutral pH. The complex was characterized by elemental analysis and melting point. The concentrations of cadmium ions before and after the extraction were determined by Atomic Absorption Spectrophotometer (AAS). The data show the percentage of the extract was more than 98.7% of the concentration of cadmium used in the study.Keywords: thiourea derivatives, cadmium extraction, water, environment
Procedia PDF Downloads 3491067 Physico-Chemical Characterization of an Algerian Biomass: Application in the Adsorption of an Organic Pollutant
Authors: Djelloul Addad, Fatiha Belkhadem Mokhtari
Abstract:
The objective of this work is to study the retention of methylene blue (MB) by biomass. The Biomass is characterized by X-ray diffraction (XRD), infrared absorption (IRTF). Results show that the biomass contains organic and mineral substances. The effect of certain physicochemical parameters on the adsorption of MB is studied (effect of the pH). This study shows that the increase in the initial concentration of MB leads to an increase in the adsorbed quantity. The adsorption efficiency of MB decreases with increasing biomass mass. The adsorption kinetics show that the adsorption is rapid, and the maximum amount is reached after 120 min of contact time. It is noted that the pH has no great influence on the adsorption. The isotherms are best modelled by the Langmuir model. The adsorption kinetics follow the pseudo-second-order model. The thermodynamic study of adsorption shows that the adsorption is spontaneous and exothermic.Keywords: dyes, adsorption, biomass, methylene blue, langmuir
Procedia PDF Downloads 671066 In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology
Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar
Abstract:
Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented.Keywords: metal foams, micro-CT, cell topology, quasistatic compression
Procedia PDF Downloads 4551065 Study of Nanocrystalline Scintillator for Alpha Particles Detection
Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi
Abstract:
We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.Keywords: nanoparticles, luminescence, sol gel, scintillator
Procedia PDF Downloads 5991064 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 1421063 Improving the Aqueous Solubility of Taxol through Altering XLOGP3
Authors: Arianna Zhu, Thomas Bakupog
Abstract:
Taxol (generic name paclitaxel) is an antineoplastic drug used to treat breast, lung, and ovarian cancer. It performs exceptionally well against a wide variety of tumors, including B16 melanoma, L1210 and P388 leukemias, MX-1 mammary tumors, and CX-1 colon tumor xenografts. However, despite taxol’s efficacy in antitumor activity, its aqueous solubility is extremely poor, decreasing its bioavailability and making it difficult for the body to absorb. The objective of this study is to improve the solubility of taxol, thus increasing the bioavailability of the drug in preventing cancer. By modifying the structure of taxol, four novel taxol derivatives were created with improved solubilities. Two of the derivatives were given an additional hydrogen donor and acceptor and thus showed a pronounced positive change in solubility. The results of this work solve the issue of taxol’s inadequate solubility and show potential in increasing the absorption of the drug.Keywords: Taxol, Solubility, improving bioavailability, logP
Procedia PDF Downloads 691062 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 2951061 Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red
Authors: Khansaa Al-Essa
Abstract:
Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst.Keywords: photodegradation, dye, nanocomposite, graphitic carbon nitride-CeO₂
Procedia PDF Downloads 201060 Heavy Metals in PM2.5 Aerosols in Urban Sites of Győr, Hungary
Authors: Zs. Csanádi, A. Szabó Nagy, J. Szabó, J. Erdős
Abstract:
Atmospheric concentrations of some heavy metal compounds (Pb, Cd, Ni) and the metalloid As were identified and determined in airborne PM2.5 particles in urban sites of Győr, northwest area of Hungary. PM2.5 aerosol samples were collected in two different sampling sites and the trace metal(loid) (Pb, Ni, Cd and As) content were analyzed by atomic absorption spectroscopy. The concentration of PM2.5 fraction was varied between 12.22 and 36.92 μg/m3 at the two sampling sites. The trend of heavy metal mean concentrations regarding the mean value of the two urban sites of Győr was found in decreasing order of Pb > Ni > Cd. The mean values were 7.59 ng/m3 for Pb, 0.34 ng/m3 for Ni and 0.11 ng/m3 for Cd, respectively. The metalloid As could be detected only in 3.57% of the total collected samples. The levels of PM2.5 bounded heavy metals were determined and compared with other cities located in Hungary.
Keywords: aerosol, air quality, heavy metals, PM2.5
Procedia PDF Downloads 2951059 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading
Authors: Michał Rogala, Jakub Gajewski
Abstract:
As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure
Procedia PDF Downloads 1461058 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications
Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia
Abstract:
In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.Keywords: bioimaging, cerium fluoride, NIR emission, samarium
Procedia PDF Downloads 4171057 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)
Authors: Mohamed Tamer, Wink Michael
Abstract:
DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm
Procedia PDF Downloads 5011056 Proposed Algorithms to Assess Concussion Potential in Rear-End Motor Vehicle Collisions: A Meta-Analysis
Authors: Rami Hashish, Manon Limousis-Gayda, Caitlin McCleery
Abstract:
Introduction: Mild traumatic brain injuries, also referred to as concussions, represent an increasing burden to society. Due to limited objective diagnostic measures, concussions are diagnosed by assessing subjective symptoms, often leading to disputes to their presence. Common biomechanical measures associated with concussion are high linear and/or angular acceleration to the head. With regards to linear acceleration, approximately 80g’s has previously been shown to equate with a 50% probability of concussion. Motor vehicle collisions (MVCs) are a leading cause of concussion, due to high head accelerations experienced. The change in velocity (delta-V) of a vehicle in an MVC is an established metric for impact severity. As acceleration is the rate of delta-V with respect to time, the purpose of this paper is to determine the relation between delta-V (and occupant parameters) with linear head acceleration. Methods: A meta-analysis was conducted for manuscripts collected using the following keywords: head acceleration, concussion, brain injury, head kinematics, delta-V, change in velocity, motor vehicle collision, and rear-end. Ultimately, 280 studies were surveyed, 14 of which fulfilled the inclusion criteria as studies investigating the human response to impacts, reporting head acceleration, and delta-V of the occupant’s vehicle. Statistical analysis was conducted with SPSS and R. The best fit line analysis allowed for an initial understanding of the relation between head acceleration and delta-V. To further investigate the effect of occupant parameters on head acceleration, a quadratic model and a full linear mixed model was developed. Results: From the 14 selected studies, 139 crashes were analyzed with head accelerations and delta-V values ranging from 0.6 to 17.2g and 1.3 to 11.1 km/h, respectively. Initial analysis indicated that the best line of fit (Model 1) was defined as Head Acceleration = 0.465Keywords: acceleration, brain injury, change in velocity, Delta-V, TBI
Procedia PDF Downloads 2331055 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles
Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova
Abstract:
Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.Keywords: ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite
Procedia PDF Downloads 2451054 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing
Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque
Abstract:
Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle
Procedia PDF Downloads 1011053 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application
Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski
Abstract:
Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)
Procedia PDF Downloads 1641052 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 3541051 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers
Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao
Abstract:
Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties
Procedia PDF Downloads 4301050 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant
Authors: M. Wigwe, J. G Akpa, E. N Wami
Abstract:
Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol
Procedia PDF Downloads 4991049 Studies on Separation of Scandium from Sulfate Environment Using Ion Exchange Technique
Authors: H. Hajmohammadi , A. H. Jafari, M. Eskandari Nasab
Abstract:
The ion exchange method was used to assess the absorption of sulfate media from laboratory-grade materials. The Taguchi method was employed for determining the optimum conditions for scandium adsorption. Results show that optimum conditions for scandium adsorption from sulfate were obtained by Purolite C100 cationic resin in 0.1 g/l sulfuric acid and scandium concentration of 2 g/l at 25 °C. Studies also showed that lowering H₂SO₄ concentration and aqueous phase temperature leads to an increase in Sc adsorption. Visual Minteq software was used to ascertain the various possible cation types and the effect of concentration of scandium ion species on scandium adsorption by cationic resins. The simulation results of the above software show that scandium ion species are often cationic species that are consistent with experimental data.Keywords: scandium, ion exchange resin, simulation, leach copper
Procedia PDF Downloads 1421048 Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing
Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh
Abstract:
This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities as well as the of fibrils. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.Keywords: hydrolytic ageing, moisture membrane, water vapor permeability, morphology
Procedia PDF Downloads 3151047 Modeling Thermo-Photo-Voltaic Selective Emitter Based on a Semi-Transparent Emitter with Integrated Narrow Band-Pass Pre-Filter
Authors: F. Stake
Abstract:
This work is a parametric study combining simple and well known optical theories. These simple theories are arranged to form part of one answer to the question: “Can a semi-transparent Thermo-Photo-Voltaic (TPV) emitter have an optical extinction spectrum so much greater than its optical absorption spectrum that it becomes its own band-pass pre-filter, and if so, how well might it be expected to suppress light of undesired wavelengths?” In the report, hypothetical materials and operating temperatures will be used for comparative analyses only. Thermal emission properties of these hypothetical materials were created using two openly available FORTRAN programs. Results indicate that if using highly transparent materials it may be possible to create a thermal emitter that is its own band-pass pre-filter.Keywords: Christensen effect, DISORT, index of refraction, scattering
Procedia PDF Downloads 1191046 Corrosion Protection of Steel 316 by Electrochemically Synthesized Conductive Poly (O-Toluidine)
Authors: H. Acar, M. Karakışla, L. Aksu, M. Saçak
Abstract:
The corrosion protection effect of poly(o-toluidine) (POT) coated on steel 316 electrode was determined in corrosive media such as NaCl, H2SO4 and HCl with the use of Tafel curves and electrochemical impedance spectroscopy techniques. The POT coatings were prepared with cyclic voltammetry technique in aqueous solution of oxalic acid and they were characterized by FTIR and UV-Visible absorption spectroscopy. The Tafel curves revealed that the POT coating provides the most effective protection compared to the bare steel 316 electrode in NaCl as corrosive medium. The results were evaluated based upon data decrease of corrosion current and shift to positive potentials with the increase of number of scans. Electrochemical impedance spectroscopy measurements were found to support Tafel data of POT coating.Keywords: corrosion, impedance spectroscopy, steel 316, poly(o-toluidine)
Procedia PDF Downloads 3191045 A Review on Agricultural Landscapes as a Habitat of Rodents
Authors: Nadeem Munawar, Tariq Mahmood, Paula Rivadeneira, Ali Akhter
Abstract:
In this paper, we review on rodent species which are common inhabitants of agricultural landscapes where they are an important prey source for a wide variety of avian, reptilian, and mammalian predators. Agricultural fields are surrounded by fallow land, which provide suitable sites for shelter and breeding for rodents, while shrubs, grasses, annual weeds and forbs may provide supplementary food. The assemblage of rodent’s fauna in the cropland habitats including cropped fields, meadows and adjacent field structures like hedgerows, woodland and field margins fluctuates seasonally. The mature agricultural crops provides good source of food and shelter to the rodents and these factors along with favorable climatic factors/season facilitate breeding activities of these rodent species. Changes in vegetation height and vegetative cover affect two important aspects of a rodent’s life: food and shelter. In addition, during non-crop period vegetation can be important for building nests above or below ground and it provides thermal protection for rodents from heat and cold. The review revealed that rodents form a very diverse group of mammals, ranging from tiny pigmy mice to big capybaras, from arboreal flying squirrels to subterranean mole rats, from opportunistic omnivores (e.g. Norway rats) to specialist feeders (e.g. the North African fat sand rats that feed on a single family of plants only). It is therefore no surprise that some species thrive well under the conditions that are found in agricultural fields. The review on the population dynamics of the rodent species indicated that they are agricultural pests probably due to the heterogeneous landscape and to the high rotativity of vegetable crop cultivation. They also cause damage to various crops, directly and indirectly, by gnawing, spoilage, contamination and hoarding activities, besides this behavior they have also significance importance in agricultural habitat. The burrowing activities of rodents alter the soil properties around their burrows which improve its aeration, infiltration, increase the water holding capacity and thus encourage plant growth. These properties are beneficial for the soil because they affect absorption of phosphorus, absorption zinc, copper, other nutrients and the uptake of water and thus rodents are known as indicator species in agricultural fields. Our review suggests that wide crop field’s borders, particularly those contiguous to various cropland fields, should be understood as priority sites for nesting, feeding, and cover for the rodent’s fauna. The goal of this review paper is to provide a comprehensive synthesis of understanding regarding rodent habitat and biodiversity in agricultural landscapes.Keywords: agricultural landscapes, food, indicator species, shelter
Procedia PDF Downloads 1691044 Simulation of X-Ray Tissue Contrast and Dose Optimisation in Radiological Physics to Improve Medical Imaging Students’ Skills
Authors: Peter J. Riley
Abstract:
Medical Imaging students must understand the roles of Photo-electric Absorption (PE) and Compton Scatter (CS) interactions in patients to enable optimal X-ray imaging in clinical practice. A simulator has been developed that shows relative interaction probabilities, color bars for patient dose from PE, % penetration to the detector, and obscuring CS as Peak Kilovoltage (kVp) changes. Additionally, an anthropomorphic chest X-ray image shows the relative tissue contrasts and overlying CS-fog at that kVp, which determine the detectability of a lesion in the image. A series of interactive exercises with MCQs evaluate the student's understanding; the simulation has improved student perception of the need to acquire "sufficient" rather than maximal contrast to enable patient dose reduction at higher kVp.Keywords: patient dose optimization, radiological physics, simulation, tissue contrast
Procedia PDF Downloads 951043 Effect of Anion Variation on the CO2 Capture Performance of Pyridinium Containing Poly(ionic liquid)s
Authors: Sonia Zulfiqar, Daniele Mantione, Muhammad Ilyas Sarwar, Alexander Rothenberger, David Mecerreyes
Abstract:
Climate change due to escalating carbon dioxide concentration in the atmosphere is an issue of paramount importance that needs immediate attention. CO2 capture and sequestration (CCS) is a promising route to mitigate climate change and adsorption is the most widely recognized technology owing to possible energy savings relative to the conventional absorption techniques. In this conference, the potential of a new family of solid sorbents for CO2 capture and separation will be presented. Novel pyridinium containing poly(ionic liquid)s (PILs) were synthesized with varying anions i.e bis(trifluoromethylsulfonyl)imide and hexafluorophosphate. The resulting polymers were characterized using NMR, XRD, TGA, BET surface area and microscopic techniques. Furthermore, CO2 adsorption measurements at two different temperatures were also carried out and revealed great potential of these PILs as CO2 scavengers.Keywords: climate change, CO2 capture, poly(ionic liquid)s, CO2/N2 selectivity
Procedia PDF Downloads 3731042 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction
Authors: Yanxue Shang, Jingbin Zeng
Abstract:
Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction
Procedia PDF Downloads 1431041 Investigation on Dry Sliding Wear for Laser Cladding of Stellite 6 Produced on a P91 Steel Substrate
Authors: Alain Kusmoko, Druce Dunne, Huijun Li
Abstract:
Stellite 6 was deposited by laser cladding on a chromium bearing substrate (P91) with energy inputs of 1 kW (P91-1) and 1.8 kW (P91-1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the P91 steel substrate with the lower heat input (P91-1). Further, the Stellite coating for P91-1 was significantly harder than that obtained for P91-1.8. The wear test results indicated that the weight loss for P91-1 was much lower than for P91-1.8. It is concluded that the lower hardness of the coating for P91-1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating.Keywords: friction and wear, laser cladding, P91 steel, Stellite 6 coating
Procedia PDF Downloads 4411040 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate
Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han
Abstract:
The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties
Procedia PDF Downloads 4041039 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan
Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf
Abstract:
Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor
Procedia PDF Downloads 584